A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE

FINAL REPORT

Study Director

Joseph C. Siglin, Ph.D., DABT

Study Completed on

December 28, 2000

Performing Laboratory

Springborn Laboratories, Inc. (SLI)
Ohio Research Center
640 North Elizabeth Street
Spencerville, OH 45887

SLI Study No.

3472.3

Submitted to:

NiPERA, Inc. 2605 Meridian Parkway Suite 200 Durham, NC 27713

Page 1 of 442

COMPLIANCE STATEMENT

This study was conducted in compliance with the Principles of Good Laboratory Practice as described by the OECD [C(97)186/FINAL] and SLI's Standard Operating Procedures.

Joseph C. Siglin, Ph.D./, DABT

Study Director

Springborn Laboratories, Inc.

Date ____12/28/00

QUALITY ASSURANCE STATEMENT

This study was inspected by the Quality Assurance Unit and reports were submitted to management and the Study Director in accordance with SLI's Standard Operating Procedures as follows:

<u>Phase</u>	<u>Date</u>
Dosing Data Audits	08/04/98 12/22/98, 01/07/99
Draft Report Review	03/24/99
Final Report Review	12/28/00
Reports Submitted to Study Director and Management	08/04/98, 03/25/99, 12/28/00
and Management	12/28/00

This study was conducted in compliance with the Principles of Good Laboratory Practice as described by the OECD [C(97)186/FINAL].

Deanna M. Talerico, RQAP-GLP

Supervisor of Nonacute Quality Assurance

12/28/00

Anita M. Bosau, RQAP-GLP

Director of Compliance Assurance

TABLE OF CONTENTS

COMPLIANCE STATEMENT	2
QUALITY ASSURANCE STATEMENT	3
TABLE OF CONTENTS	4
LIST OF TABLES	7
LIST OF APPENDICES	9
SUMMARY 1	1
INTRODUCTION1	2
OBJECTIVE 1	2
MATERIALS AND METHODS1	2
Experimental Protocol	2
Test Article and Vehicle Control Material1Test Article Receipt, Identification and Storage1Vehicle Control Material1Dose Preparation1Homogeneity, Stability and Concentration Analyses1	3 3 3
Animals and Animal Husbandry	4 4 5
Experimental Procedures1Study Group Design1Rationale for Dosage Level Selection1Randomization and Group Assignment1Treatment1Breeding1	5 6 6

TABLE OF CONTENTS

	F0 Parameters Evaluated F0 Clinical Observations F0 Body Weights F0 Food and Water Consumption F0 Parturition and Lactation F0 Euthanasia and Necropsy	17 17 17 18
	F1 Parameters Evaluated F1 Pup Identification F1 Standardization of Litter Size F1 Litter Data Selection of F1 Animals Selected F1 Clinical Observations Selected F1 Body Weights Selected F1 Euthanasia and Necropsy	19 19 19 20 20
ST	TATISTICAL ANALYSES	20
MΑ	AINTENANCE OF RAW DATA AND RECORDS	21
RE	ESULTS	21
	Analytical Chemistry Evaluations	21
	F0 Generation	21 22 22 22
	F0 Gross Necropsy Observations	
	F1 Generation	23 24 24 24
	Sciected Fit Survival and Cillical Observations	24

TABLE OF CONTENTS

Selected F1 Body Weights and Weight Gain	
DISCUSSION AND CONCLUSION	25
REPORT REVIEW	26
REFERENCES	27

LIST OF TABLES

1.	Summary of F0 Survival and Clinical Observations
2.	Summary of F0 Body Weight Data
3.	Summary of F0 Body Weight Gain Data
4.	Summary of F0 Gestation Body Weight Data
5.	Summary of F0 Gestation Body Weight Gain Data 39
6.	Summary of F0 Lactation Body Weight Data
7.	Summary of F0 Lactation Body Weight Gain Data 41
8.	Summary of F0 Food Consumption Data (grams/animal/day)
9.	Summary of F0 Gestation Food Consumption Data (grams/animal/day)
10.	Summary of F0 Lactation Food Consumption Data (grams/animal/day)
11.	Summary of F0 Water Consumption Data (grams/animal/day)
12.	Summary of F0 Gestation Water Consumption Data (grams/animal/day)
13.	Summary of F0 Lactation Water Consumption Data (grams/animal/day)
14.	Summary of F0 Copulation, Fertility, Precoital Interval and Gestation Length Data
15.	Summary of F0 Gross Necropsy Observations
16.	Summary of F0 Implantation and Post-Implantation Loss Data

LIST OF TABLES

17.	Summary of F1 Pup Viability	58
18.	Summary of F1 Pup Observations during Lactation	60
19.	Summary of F1 Pup Weights during Lactation	61
20.	Summary of F1 Pup Gross Necropsy Observations	62
21.	Summary of F1 Survival and Clinical Observations	64
22.	Summary of F1 Body Weight Data	66
23.	Summary of F1 Body Weight Gain Data	68
24.	Summary of F1 Gross Necropsy Observations	70

LIST OF APPENDICES

Α.	A Preliminary Probe Study in Rats
B.	Protocol, Protocol Amendments and Protocol Deviations/Occurrences
C.	Certificate of Analysis and Analytical Chemistry Results 139
D.	Individual F0 Survival and Clinical Observations
E.	Individual F0 Body Weight Data
F.	Individual F0 Body Weight Gain Data
G.	Individual F0 Gestation Body Weight Data
H.	Individual F0 Gestation Body Weight Gain Data 204
I.	Individual F0 Lactation Body Weight Data
J.	Individual F0 Lactation Body Weight Gain Data
K.	Individual F0 Food Consumption Data (grams/animal/day)
L.	Individual F0 Gestation Food Consumption Data (grams/animal/day)
M.	Individual F0 Lactation Food Consumption Data (grams/animal/day)
N.	Individual F0 Water Consumption Data (grams/animal/day)
Ο.	Individual F0 Gestation Water Consumption Data (grams/animal/day)
P.	Individual F0 Lactation Water Consumption Data (grams/animal/day)

LIST OF APPENDICES

Q.	Individual F0 Reproductive Performance Data
R.	Individual F0 Gestation Length Data
S.	Individual F0 Gross Necropsy Observations
T.	Individual F0 Implantation and Post-Implantation Loss Data
U.	Individual F1 Pup Viability
٧.	Individual F1 Pup Observations during Lactation
W.	Individual F1 Pup Weights during Lactation
X.	Individual F1 Pup Gross Necropsy Observations
Y.	Individual F1 Survival and Clinical Observations
Z.	Individual F1 Body Weight Data
AA.	Individual F1 Body Weight Gain Data
BB.	Individual F1 Gross Necropsy Observations
CC.	SLI Historical Control Data
DD.	SLI Personnel Responsibilities

SUMMARY

This range-finding study was conducted to evaluate the potential effects of nickel sulfate hexahydrate when administered orally to rats over the course of one generation. The study consisted of a vehicle control and five treatment groups, with eight males and eight females in each group. The test article was dissolved in reverse osmosis-deionized (RO-Di) water and administered at dosage levels of 10, 20, 30, 50 and 75 mg/kg/day, by once daily oral gavage, to F0 parental animals and selected F1 offspring. Dosing of the F0 parental animals began two weeks prior to mating. Dosing of the F1 offspring began on postnatal day (PND) 22. For both generations, daily dosing was continued until the day prior to or the day of scheduled euthanasia. All doses were given at a constant volume of 10 mL/kg. Control animals were administered RO-Di water under the same experimental conditions at an equivalent dose volume.

Both F0 parental animals and F1 offspring were closely examined for indications of toxicity. Experimental endpoints for F0 animals included clinical observations, body weights, food and water consumption, mating, parturition, lactation and offspring growth and viability. Experimental endpoints for selected F1 animals included survival, clinical observations and body weights during the F1 dosing phase. All F0 and F1 selected animals were subjected to a gross necropsy examination at the time of death or terminal euthanasia.

Oral administration of the test article had no effect on F0 survival, growth, mating behavior, copulation, fertility, precoital intervals, gestation lengths or gross necropsy findings. The incidence of dead pups on lactation day 0 was significantly increased and mean live litter size was significantly decreased at the 75 mg/kg/day level. Mean post-implantation loss was significantly increased at dosage levels \geq 30 mg/kg/day. Growth of surviving F1 pups during lactation appeared to be unaffected. Administration of the test article to selected F1 animals beginning on postnatal day 22 had no effect on survival or growth of the animals for several weeks following weaning.

In conclusion, based on the results of this one-generation reproduction range-finding study, dosage levels of 1.0, 2.5, 5.0 and 10.0 mg/kg/day were selected for a definitive two-generation reproduction study in rats.

I. INTRODUCTION

This report details the experimental procedures and results of a one-generation reproduction range-finding study in rats with nickel sulfate hexahydrate. The study was authorized by NiPERA, Inc., Durham, North Carolina, and was conducted at Springborn Laboratories, Inc. (SLI), 640 North Elizabeth Street, Spencerville, Ohio. The Sprague-Dawley rat was selected as the experimental model since this species/strain has a proven sensitivity to a variety of agents and provides a suitable animal model for testing chemicals and drugs for human risk assessment. Oral administration of the test article was selected since this is a potential route of human exposure. The protocol was signed by the Study Director on July 9, 1998 (GLP initiation date). The in-life phase of the range-finding study was initiated on August 4, 1998, and concluded on October 30, 1998.

Prior to initiation of the range-finding study, a preliminary probe study was conducted in rats to aid in dosage level selection for the range-finding study. The preliminary probe study was initiated on July 14, 1998, and concluded on July 28, 1998. The experimental methods and results of the preliminary probe study are provided in Appendix A.

II. OBJECTIVE

This range-finding study was conducted to evaluate the potential effects of nickel sulfate hexahydrate when administered to rats by oral gavage over the course of one generation. Data from this study were used to select dosage levels for a two-generation reproduction study in rats.

III. MATERIALS AND METHODS

A. Experimental Protocol

The study protocol, protocol amendments and protocol deviations/occurrences are presented in Appendix B.

B. Test Article and Vehicle Control Material

1. Test Article Receipt, Identification and Storage

The test article was received from Aldrich Chemical Company and identified as follows:

Sponsor's ID	Assigned	Physical	Receipt
	<u>SLI ID</u>	<u>Description</u>	<u>Date</u>
Nickel(II) Sulfate Hexahydrate (CAS No. 10101-97-0) Lot No. 08516TQ	S98.001.3472	Blue-green crystalline powder	07/08/98

A one gram retention sample of the test article was taken and stored at SLI. The retention sample and remaining test article were stored at ambient temperature in a tightly closed container. The purity of the test article was 99%. Documentation concerning chemical identification, purity, strength, stability and other required data was the responsibility of the Sponsor. A Certificate of Analysis for the nickel sulfate hexahydrate, as provided by the Aldrich Chemical Company, is included in Appendix C.

2. Vehicle Control Material

The vehicle control material used in the preparation of the dosing solutions and for administration to control animals was reverse osmosis-deionized (RO-Di) water from the SLI Pharmacy source.

3. Dose Preparation

For each test article dose group, a specified amount of nickel sulfate hexahydrate was weighed into a weigh boat and placed in a volumetric flask. A sufficient quantity of RO-Di water was added to the flask to achieve the desired volume and the mixture was stirred for 15 minutes. Each test article solution was prepared once every 21 days and stored refrigerated (approximately 2 to 8°C) in amber glass containers. During each fresh preparation, RO-Di water was dispensed into daily aliquots for administration to control animals. The physical state of the control and each dosing solution was recorded during each preparation. The vehicle (group 1) was a clear colorless solution; group 2 was a clear, very pale blue-green solution; groups 3 and 4 were clear, pale blue-green solutions; and groups 5 and 6 were clear, light blue-green solutions. Daily aliquots of the dosing solutions were allowed to equilibrate to room temperature prior

to dispensing. The dosing solutions were stirred prior to dispensation and then continuously until dosing was complete.

4. Homogeneity, Stability and Concentration Analyses

Homogeneity of the test article in the vehicle was evaluated by analyzing duplicate 10 mL samples from the top, middle and bottom of the 0.1 and 7.5 mg/mL concentrations. Stability of the test article in the vehicle was assessed by analyzing duplicate 10 mL samples obtained from the middle of the 0.1 and 7.5 mg/mL concentrations following 24 hours of room temperature storage, and following 7, 14, and 21 days of refrigerated storage. In addition, duplicate 10 mL samples were obtained from the vehicle and each test article dosing mixture at the first preparation for verification of test article concentration. The analytical samples were packed in ice and shipped to Lancaster Laboratories, Lancaster, Pennsylvania, for analysis by atomic absorption. The results of the analyses are included in Appendix C.

C. Animals and Animal Husbandry

Animal housing and care were based on the standards established by the Association for Assessment and Accreditation of Laboratory Animal Care, International (AAALAC) and the guidelines set forth in the Guide for the Care and Use of Laboratory Animals, NIH Publication No. 96-03, 1996.

1. Animal Receipt, Identification and Housing

Seventy male and seventy female Sprague-Dawley Crl:CD®(SD)IGS BR rats were received at SLI on July 9, 1998, from Charles River Laboratories, Inc., St. Constant, Quebec, Canada, for the preliminary probe and range-finding studies. At the time of receipt, each rat was identified with a metal ear tag displaying a unique number. Animals were housed individually (except during cohabitation for mating) in stainless steel cages suspended above cage-board or plastic nesting boxes (F0 females) for parturition and lactation. A cage card displaying the study, group and animal numbers, and sex was affixed to each cage. The cage cards were color-coded based on group number following group assignment.

2. Acclimation

Animals were examined upon receipt and daily thereafter during acclimation for signs of physical or behavioral abnormalities. General

health/mortality checks were performed twice daily, in the morning and afternoon. Individual body weights were recorded on the day following receipt and just prior to randomization on day -1. The animals were acclimated to the laboratory conditions for 25 days prior to randomization.

3. Diet and Drinking Water

PMI Certified Rodent Chow® #5002 (Purina Mills, Inc.) and municipal tap water were provided to each animal ad libitum. The feed was analyzed by the supplier for nutritional components and environmental contaminants. The lot number and expiration date of each batch of feed used during the study were recorded. The tap water was purified by reverse osmosis and supplied to the animals by an automatic watering system or in water bottles for measurement of water consumption. Water supplying the facility is analyzed on an annual basis for contaminants according to SLI Standard Operating Procedures. The results of the feed and water analyses are maintained at SLI. Within generally accepted limits, there were no contaminants in the diet or drinking water which would interfere with the conduct of the study.

4. Environmental Conditions

The environmental controls in the animal room were set to maintain room temperature and relative humidity ranges of 65 to 79°F and 30 to 70%, respectively. Environmental control equipment was monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers were set to maintain a 12-hour light/12-hour dark cycle and the room ventilation was set to produce 10 to 15 air changes per hour. The room temperature and relative humidity were recorded a minimum of once daily.

D. Experimental Procedures

1. Study Group Design

The following table presents the study group design and dosage levels tested:

Group	No. of	Animals Female	Dosage Material	Dosage Level (mg/kg/day)	Dosage Conc. (mg/mL)	Dosage Volume (mL/kg)
1	8	8	RO-Di Water	0	0	10
2	8	8	Nickel Sulfate Hexahydrate	10	1.0	10
3	8	8	Nickel Sulfate Hexahydrate	20	2.0	10
4	8	8	Nickel Sulfate Hexahydrate	30	3.0	10
5	8	8	Nickel Sulfate Hexahydrate	50	5.0	10
6	8	8	Nickel Sulfate Hexahydrate	75	7.5	10

2. Rationale for Dosage Level Selection

Dosage levels were selected in an attempt to produce graded responses to the test article. Dosage levels were selected based on the results of the preliminary probe study conducted in rats (see Appendix A).

3. Randomization and Group Assignment

On day -1, the animals were weighed and examined in detail. Animals determined to be suitable test subjects were randomly assigned to groups using a computer randomization program. The program ranked the animals according on day -1 body weights and randomly assigned the animals to study groups in a stratified block design. Disposition of animals not assigned to the study was documented in the study records. On the day following receipt, the animals were approximately 11 weeks of age with body weights ranging from 269 to 360 grams for males and from 187 to 247 grams for females.

4. Treatment

Dosing preparations were administered orally, by gavage, as a single dose daily to F0 parents and selected F1 offspring. Individual doses were adjusted based on the most recent body weight data. Dosing for F0 parental animals was initiated 14 days prior to mating and dosing for F1 offspring was initiated on postnatal day 22. Dosing continued until the day prior to or the day of scheduled euthanasia.

5. Breeding

Following 14 days of treatment for the F0 parental animals, each female was cohabited with a single male randomly selected from the same treatment group. Each mating pair was observed daily for evidence of copulation. Evidence of mating was determined by the presence of a copulatory plug in the vagina or a sperm positive vaginal smear. The day

evidence of copulation was confirmed was designated as day 0 of gestation and the female was returned to its cage. If no evidence of copulation was observed after 14 days of mating, the female was separated from the male.

E. F0 Parameters Evaluated

1. F0 Clinical Observations

Mortality/general health checks were performed twice daily, in the morning and afternoon. Detailed clinical observations were performed weekly and cage-side observations were performed daily approximately one-half hour to two hours following dosing. During gestation and lactation, detailed clinical observations were performed daily for F0 females. Detailed clinical observations were also performed on the day of scheduled euthanasia.

2. F0 Body Weights

Individual body weights were recorded weekly and on the day of scheduled euthanasia for the males. Individual body weights were recorded weekly for the females until evidence of mating was observed. When positive evidence of mating was detected, the females were weighed on gestation days 0, 7, 14 and 20. Following parturition, the females were weighed on lactation days 1, 4, 7, 10, 14 and 21. Body weights were recorded weekly and on the day of scheduled euthanasia for females with no positive evidence of mating.

3. F0 Food and Water Consumption

Individual food and water consumption were recorded weekly for the males, except during cohabitation. Food and water consumption were not recorded while the animals were paired for breeding. Food and water consumption were recorded weekly for the females until evidence of mating was observed. When positive evidence of mating was detected, food and water consumption were recorded for the females on gestation days 0, 7, 14 and 20. Following parturition, food and water consumption for the females were recorded on lactation days 1, 4, 7 and 10. Food and water consumption were recorded weekly for females with no positive evidence of mating. Both food and water consumption were calculated as grams/animal/day.

4. F0 Parturition and Lactation

On gestation day 18, females with confirmed copulation were transferred to individual plastic boxes containing nesting material. Each female was observed for signs of parturition a minimum of twice daily. The time parturition was first detected and the time parturition was completed were recorded, when possible. Signs of difficult or prolonged delivery were recorded, if observed. The day on which parturition was judged complete was designated as lactation day 0. The females and their offspring remained together until lactation day 21. Abnormal nursing and nesting behaviors were recorded, if observed. The offspring were designated as the F1 generation. Females with no evidence of mating were examined for parturition beginning 19 days following initiation of cohabitation.

5. F0 Euthanasia and Necropsy

All animals were subjected to an abbreviated gross necropsy at the time of death or euthanasia. Females that were found dead during the study were necropsied. The necropsy examination included evaluation of the external surfaces of the body and major tissues and organs in the thoracic, abdominal and pelvic cavities. Uterine contents were examined and the number of implantation sites and number of corpora lutea on each ovary were recorded. The number of implantation scars was recorded. All abnormalities were recorded and no tissues were retained at necropsy. Pups from dams found dead were euthanized and discarded without necropsy.

Surviving females were euthanized by carbon dioxide (CO₂) inhalation. Dams that delivered and weaned their offspring were euthanized on lactation day 21. Females that failed to deliver were euthanized 25 days after evidence of mating was first detected (post-breeding day 25). Females with no evidence of mating were euthanized 25 days following conclusion of the mating period (post-breeding period day 25). Females with total litter loss were euthanized and necropsied on the day that no surviving pups remained. The necropsy examination included evaluation of the external surfaces of the body and major tissues and organs in the thoracic, abdominal and pelvic cavities. Uterine contents were examined and the number of implantation scars was recorded. Uteri with no macroscopic implantations were opened and placed in 10% aqueous ammonium sulfide solution for detection of early embryolethality as described by Salewski [1]. The number of implantation scars was recorded. All abnormalities were recorded and no tissues were retained at necropsy. All males (euthanized moribund and surviving) were euthanized by CO₂ inhalation. Surviving males were euthanized following completion of female parturition. The necropsy examination included evaluation of the external surfaces of the body and major tissues and organs in the thoracic, abdominal and pelvic cavities. No tissues were retained at necropsy.

F. F1 Parameters Evaluated

1. F1 Pup Identification

On lactation day 0, each viable pup was identified with a tail tattoo. Nonviable pups were identified with indelible marker on lactation day 0.

2. F1 Standardization of Litter Size

Following observations and body weights on lactation day 4, each litter was randomly culled to a maximum of eight pups, four per sex per litter, when possible. The culled pups were euthanized by CO_2 inhalation and discarded without necropsy.

3. F1 Litter Data

Pup viability was determined daily throughout lactation. A detailed examination of each pup was performed on lactation days 0, 4, 7, 14 and 21. The sex of each pup was determined on lactation day 0 and verified on lactation days 4, 7, 14 and 21. Individual pup weights were determined on lactation days 1, 4, 7, 14 and 21. Intact (noncannibalized) pups which were found dead during lactation were necropsied. During necropsy, emphasis was placed on the examination of developmental morphology. No tissues were retained at necropsy.

4. Selection of F1 Animals

Between postpartum days 6 and 13, eight pups per sex per group were randomly selected for the F1 dosing phase. Each pup was examined externally and the sex was verified prior to selection. Clinical observations recorded prior to selection are maintained in the study records. When possible, one male and one female pup were selected from each litter. Selected animals were identified with metal ear tags displaying unique numbers and transferred to stainless steel cages. The selected F1 weanlings were gang-housed (two or three/sex/group/cage) for three days to allow the animals to become accustomed to the automatic watering system. The F1 rats were then single-housed for the remainder of the growth phase. Mortality/general health checks were performed twice daily,

in the morning and afternoon. Nonselected F1 pups were euthanized by CO₂ inhalation and discarded without necropsy.

5. Selected F1 Clinical Observations

Mortality/general health checks were performed twice daily, in the morning and afternoon. Detailed clinical observations were performed weekly and cage-side observations were performed daily approximately one-half hour to two hours following dosing. Detailed clinical observations were also performed on the day of scheduled euthanasia.

6. Selected F1 Body Weights

Individual body weights were recorded weekly and on the day of scheduled euthanasia.

7. Selected F1 Euthanasia and Necropsy

Following conclusion of F1 dosing, all animals were euthanized by CO_2 inhalation and subjected to an abbreviated gross necropsy at scheduled euthanasia. The necropsy examination included evaluation of the external surfaces of the body and major tissues and organs in the thoracic, abdominal and pelvic cavities. All abnormalities were recorded and no tissues were retained.

IV. STATISTICAL ANALYSES

Body weights, body weight gain, food consumption, water consumption, gestation length and mean live litter size were analyzed by One-Way Analysis of Variance (ANOVA) [2]. If significance was observed with ANOVA, control to treatment group comparisons were performed using Dunnett's test [3]. Count data were analyzed using Chi-Square test [4] for copulation and fertility indices, pup sex ratios, the number of live and dead pups per group (on lactation day 0) and pup survival (after lactation day 0). The Mann-Whitney U test was used to compare post-implantation loss [5]. All analyses were two-tailed with a minimum significance level of 5% (p<0.05).

V. MAINTENANCE OF RAW DATA AND RECORDS

The remaining test article will be properly disposed of following completion of all testing with this compound. All original paper data, magnetically encoded records and the final report will be transferred to the SLI archives and stored for a minimum of ten years. The Sponsor will be consulted prior to final disposition of these items.

VI. RESULTS

A. Analytical Chemistry Evaluations

Appendix C (Analytical Chemistry Results)

Analytical chemistry analyses demonstrated that the test article was homogeneous and stable in aqueous solution at concentrations of 0.1 and 7.5 mg/mL following room temperature storage for 24 hours, and following refrigerated storage for up to 21 days. With regard to homogeneity in the vehicle, mean analytical concentrations were all within 10% of the respective target concentrations for samples taken from the top, middle and bottom of the 0.1 and 7.5 mg/mL solutions. Similarly, mean analytical concentrations for stability samples from the 0.1 and 7.5 mg/mL solutions were all within 10% of the respective target concentrations after 24 hours of room temperature storage, and after 7, 14 and 21 days of refrigerated storage. Analysis of the first dosing solutions prepared for the study resulted in average test article recoveries ranging from 104.2 to 106.8%. No test article was detected in the vehicle control solution.

B. F0 Generation

1. F0 Survival and Clinical Observations

Table 1 (Summary Data)
Appendix D (Individual Data)

One control male (#17035) was euthanized moribund following a gavage error, and one 20 mg/kg/day female (#177) died as a result of an accidental injury sustained during handling. The control male exhibited a perforation of the esophagus at necropsy. The 20 mg/kg/day female was dropped on

the animal room floor after it bit the technician during dosing. Gross necropsy of this female revealed brain hemorrhage, abnormal contents in the thoracic cavity and trachea, and wet matting on the haircoat.

One 10 mg/kg/day female (#229) was euthanized on lactation day 0, and two 75 mg/kg/day females (#213 and #245) were euthanized on lactation days 2 and 1, respectively, due to total litter loss. All other F0 animals survived to scheduled euthanasia. Clinical observations in the F0 animals were generally unremarkable.

2. F0 Body Weights and Weight Gain

Tables 2-7 (Summary Data)
Appendices E-J (Individual Data)

There were no toxicologically meaningful differences in F0 body weights or weight gain during the study. In F0 females, mean body weight and weight gain were comparable among the groups prior to mating and throughout the gestation and lactation phases. In F0 males, mean body weights were comparable among the groups throughout the study, while weight gain was significantly different from controls only during weeks 2-3 in the 50 mg/kg/day group. This difference was not considered toxicologically meaningful since weight gain at the 75 mg/kg/day level remained unaffected.

3. F0 Food and Water Consumption

Tables 8-13 (Summary Data) Appendices K-P (Individual Data)

There were no toxicologically meaningful differences in F0 food or water consumption during the study. No statistically significant values were detected for either food or water consumption, in either males or females.

4. F0 Reproduction Indices, Precoital Intervals and Gestation Lengths

Table 14 (Summary Data)
Appendices Q and R (Individual Data)
Appendix CC (SLI Historical Control Data)

There were no statistically significant differences in copulation or fertility indices among the groups. The fertility index was 100% in each group; the

copulation index was 87.5% in the 50 mg/kg/day group and 100% in each of the remaining groups.

No statistically significant differences were observed in group mean precoital intervals or gestation lengths. Mean precoital intervals ranged from 2.1 to 3.5 days; mean gestation lengths ranged from 22.0 to 22.5 days.

5. F0 Gross Necropsy Observations

Table 15 (Summary Data) Appendix S (Individual Data)

Gross necropsy findings were generally unremarkable in F0 animals which survived. Those findings which were noted tended to be of low incidence and randomly distributed among the groups.

6. F0 Implantation and Post-Implantation Loss Data

Table 16 (Summary Data)
Appendix T (Individual Data)
Appendix CC (SLI Historical Control Data)

Post-implantation loss, calculated as implantation scar count minus live pups on lactation day 0, was significantly increased at the 30, 50 and 75 mg/kg/day levels. Post-implantation loss was also noticeably higher than controls at the 10 and 20 mg/kg/day levels, but was not significantly different from the control group. In addition, the post-implantation loss at the 20 mg/kg/day level (1.5 \pm 1.6) remained within the historical range of 0.88 - 2.30 for F0 litters. The post-implantation loss at the 10 mg/kg/day level (2.6 \pm 5.4) was primarily attributable to one female with total litter loss.

C. F1 Generation

1. F1 Pup Viability

Table 17 (Summary Data)
Appendix U (Individual Data)
Appendix CC (SLI Historical Control Data)

Mean live litter size on day 0 was significantly decreased at the 75 mg/kg/day level. The incidence of dead pups on day 0 was significantly

increased at the 75 mg/kg/day level. Significant increases in the incidence of dead pups on lactation day 0 were also observed at the 10, 20 and 30 mg/kg/day levels, but not at the 50 mg/kg/day level, suggesting that the former statistical differences were incidental. Pup viability at the 75 mg/kg/day level continued to decline and was significantly lower than controls on lactation day 4 prior to culling. After culling on lactation day 4, pup viability appeared to stabilize at the 75 mg/kg/day level.

2. F1 Pup Observations during Lactation

Table 18 (Summary Data)
Appendix V (Individual Data)

F1 pup observations during lactation were generally unremarkable. Individual findings tended to be randomly distributed among the groups, with no apparent dose-response pattern(s) emerging.

3. F1 Pup Body Weights during Lactation

Table 19 (Summary Data)
Appendix W (Individual Data)
Appendix CC (SLI Historical Control Data)

There were no statistically significant or toxicologically meaningful differences in F1 pup body weights during lactation.

4. F1 Pup Gross Necropsy Observations

Table 20 (Summary Data)
Appendix X (Individual Data)

In pups which were found dead on lactation day 0, the most notable gross necropsy observations consisted of atelectasis and absence of milk in the stomach, suggesting that these pups were probably stillborn.

5. Selected F1 Survival and Clinical Observations

Table 21 (Summary Data)
Appendix Y (Individual Data)

All animals survived to scheduled euthanasia and no remarkable clinical signs of toxicity were noted during the dosing phase of the selected F1 animals.

6. Selected F1 Body Weights and Weight Gain

Tables 22 and 23 (Summary Data)
Appendices Z and AA (Individual Data)

No statistically significant differences in body weights or weight gain were noted during the post-weaning growth phase of the selected F1 animals.

7. Selected F1 Gross Necropsy Observations

Table 24 (Summary Data) Appendix BB (Individual Data)

Gross necropsy findings in selected F1 animals were generally unremarkable. Those findings which were noted tended to be of low incidence and randomly dispersed among the groups.

VII. DISCUSSION AND CONCLUSION

This study evaluated the effects of the test article, nickel sulfate hexahydrate, when administered orally to rats over the course of one generation for the primary purpose of selecting dosage levels for a definitive two-generation reproduction toxicity study in rats.

Oral administration of the test article had no effect on F0 survival, growth, mating behavior, copulation, fertility, precoital intervals, gestation lengths or gross necropsy findings. The incidence of dead pups on lactation day 0 was significantly increased and mean live litter size was significantly decreased at the 75 mg/kg/day level. Mean post-implantation loss was significantly increased at dosage levels \geq 30 mg/kg/day. Growth of surviving F1 pups during lactation appeared to be unaffected. Administration of the test article to selected F1 animals beginning on postnatal day 22 had no effect on survival or growth of the animals for several weeks following weaning.

In conclusion, based on the results of this one-generation reproduction range-finding study, dosage levels of 1.0, 2.5, 5.0 and 10.0 mg/kg/day were selected for a definitive two-generation reproduction study in rats.

Joseph C. Siglin, Ph.D., DABT

Study Director

Date <u>/ / / 28/00</u>

VIII. REPORT REVIEW

Malcolm Blair, Ph.D.

Senior Vice President and Managing

Director

Date /2.28.00

IX. REFERENCES

- 1. Salewski, E., Farbemethode zum makroskopischen Nachweis von Implantations stellen am Uterus der Ratte, <u>Naunyn-Schm. Archiv. Fur Exper. Pathologic und Pharm.</u>, 247:367, 1964.
- 2. Snedecor, G. W., and Cochran, W. G., <u>Statistical Methods</u>, Sixth Edition, Iowa State University Press, Ames, Iowa, pp. 258-268, 1967.
- 3. Dunnett, C. W., J. Am. Sta. Assn., 50:1096-1121, 1955.
- 4. Siegel, S., <u>Nonparametric Statistics</u>, McGraw Hill Book Company, New York, NY, pp. 104-111, 1956.
- 5. Gad, Shayne, C., Common Statistical Procedures Used at the Chemical Hygiene Fellowship, Carnegie-Mellon Institute of Research, pp. 43-44, May 1978.

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	TABLE 1 A ONE-GENERATION REPRODUCTION RANGE-FINDING WITH NICKEL SULFATE HEXAHYDRATI SUMMARY OF FO SURVIVAL AND CLINICAL OBSERVATIONS (OCCU	TABLE CTI ON J SULFA' OBSER	TABLE 1 TI ON RANGE- FINDING STUDY IN RATS SULFATE HEXAHYDRATE OBSERVATI ONS (OCCURRENCE/ANIMALS AFFECTED)	FINDI ZAHYDRA IS (OCC	NG STUD ATE CURRENC	STUDY IN RATS RENCE/ANIMALS	ATS ALS AFI	FECTE	<u> </u>			PAGE	-	
		MAL	L E											
	GROUP: LEVEL (MG/KG/DAY):		0 0		2 10	8	3 20	•	4 30		5 50		6	
NORMAL - NO CLINICAL SIGNS		49/		48/		61/		52/		61/		62/	. ∞	!
DEAD - UNSCHEDULED EUTHANASIA - MORI BUND - SCHEDULED EUTHANASIA	- MORI BUND	1/7	1 2	\ 8 8	0 &	%	0 &	\ 8 8	0 &	0 8	0 &	0/8	0 &	
ACTI VI TY - LABORED BREATHI NG - SALI VATI ON		77		òò	0 0	°°0	0 0	\ 0 0	0 0	00	0 0	\\ 0 0	0 0	
EXCRETA/EMESIS - FEW FECES		1/	1	/0	0	/0	0	/0	0	/0	0	/0	0	
BODY -SCAB(S) - LEFT PINNA -SCAB(S) - LEFT FORELIMB -SCAB(S) - LEFT FORELIMB -SCAB(S) - RIGHT FORELIMB -SWELLING - RIGHT LATERAL THORACIC -SWELLING - LEFT HINDLIMB DIGIT(S) -HAIRLOSS -ENLARGEMENT - TAIL -PURPLE DISCOLORATION - LEFT HINDLIMB DIGIT(S) -URINE STAIN -FECAL STAIN	B AL THORACIC MB DIGIT(S) LEFT HINDLIMB DIGIT(S)	00001040000	000101000	0 11 12 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000%0000	000010000	001000	000180000	000000000000000000000000000000000000000	0000-00-00	1,000,000	110000000	
- DARK MATERIAL AROUND EYE(S)	YE(S)	3/	-	/0	0	/0	0	/0	0	0	0	/0	0	
NOTE: DATA REFLECT THE TOTAL OCCURRENCE	TOTAL OCCURRENCE OF EACH FINDING OVER THE NUMBER OF ANIMALS EXHIBITING THE FINDING	R THE	NUMBER	0F A	NI MALS	EXHI BI	TI NG TI		VDI NG.	! ! ! !	! ! !		 	!

SLI STUDY NO.: 3472.3 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS CLIENT: NIPERA, INC. SUMMARY OF FO SURVIVAL AND CLINICAL OBSERVATIONS (OCCURRENCE/ANIMALS AFFECTED)	TABLE ODUCTION I KEL SULFAT CAL OBSERY	LE 1 N RANG FATE H ERVATI	E- FI NDI EXAHYDR ONS (OC	NG STU ATE CURREN	JDY IN	RATS	AFFECTI	(Q			PAGE	က	
	- FEM	EMALE											!
GROUP: LEVEL (MG/KG/DAY):		0		2 10		3 20		30		5 50		6 75	
NORMAL - NO CLINICAL SIGNS	291/		299/		199/	5	321/	. ∞	283/		317/		!
DEAD - FOUND DEAD - SCHEDULED EUTHANASIA	0 8	0 &	0/8	0 8 a	1/7	1 7	/0	0 8 b	0 8	0 8 0	0 /8	р 0 	
ACTIVITY - INCREASED SENSITIVITY TO TOUCH	/0	0	/0	0	13/	1	/0	0	/0	0	/0	0	
EXCRETA/EMESIS - FEW FECES - SOFT STOOLS - DIARRHEA	000	000	000	000	000	000	700	1 0 0	000	000	111		
BODY - HAIRLOSS - SCAB(S) - FACIAL AREA - SCAB(S) - LEFT FORELIMB - SCAB(S) - RIGHT FORELIMB - SCAB(S) - RIGHT MAMMARY(IES)	82/ 0/2/ 4/4/	0 1 1 0	477/ 0 / 0 0 / 0	0000	141/ 0/ 1/ 1/	0 1 1 0	% 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 0 0 0 1	46/ 0 / 0 0 / 0		15/ 6/ 0/ 0/	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
-SKIN PALE IN COLOR - ALL EXTREMITIES -COOL TO THE TOUCH	00	0 0	00	00	00	00	00	00	00	00	3/		
NOTE: DATA REFLECT THE TOTAL OCCURRENCE OF EACH FINDING OVER THE NUMBER OF ANIMALS IS INCLUDES FEMALE #229 THAT WAS EUTHANIZED ON LACTATION DAY O AFTER TOTAL LITTER LOSS DE INCLUDES FEMALE #204 THAT WAS EUTHANIZED ON GESTATION DAY 25 (POST-BREEDING DAY 25 25 DAYS AFTER EVIDENCE OF WATING WAS DETECTED). C. INCLUDES FEMALE #227 THAT WAS EUTHANIZED ON STUDY DAY 54 (POST-BREEDING PERIOD DAY DELIVER AND WAS EUTHANIZED 25 DAYS AFTER COMPLETION OF THE MATING PERIOD). d INCLUDES FEMALE #213 THAT WAS EUTHANIZED ON LACTATION DAY 2 AND FEMALE #245 THAT WAS	3 OVER THE NUMBER OF DAY O AFTER TOTAL I DAY 25 (POST-BREEDING 54 (POST-BREEDING PERIOD) DAY 2 AND FEMALE #2	E NUMB TER TO POST-B BREED ING PE	A STER TOWNER OF ANIMALS E O AFTER TOTAL LITTER LOSS 25 (POST-BREEDING DAY 25 POST-BREEDING PERIOD DAY 35 MATING PERIOD). 2 AND FEMALE #245 THAT WAY	NI MALS TER LC DAY 2 I OD DA	25 - FA OAY 25 - FA	BITING AILED NO E UTHANI	OF ANI MALS EXHI BITING THE FINDING. LITTER LOSS. SDING DAY 25 - FAILED TO DELIVER AND WAS EUTHANIZE; PERIOD DAY 25 - NO EVIDENCE OF MATING, FAILED TO DD). #245 THAT WAS EUTHANIZED ON LACTATION DAY 1 AFTER	NDI NG VER A OF M	ND WAS ATING,	EUTHANI FAI LED AY 1 AFT	EUTHANIZED FAILED TO X 1 AFTER	! ! !	!

TOTAL LITTER LOSS.

SLI STUDY NO.: 3472.3 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULEATE HEXAHYDRATE WITH NICKEL SULEATE HEXAHYDRATE SUMMARY OF FO SURVIVAL AND CLINICAL OBSERVATIONS (OCCURRENCE/ANIMALS)	TABLE TI ON SULFA OBSER	TABLE 1 ZII ON RANGE- FINDING STUDY IN RATS SULFATE HEXAHYDRATE OBSERVATI ONS (OCCURRENCE/ANIMALS AFFECTED)	I NDI N HYDRA (OCC	G STUDY TE URRENCE	IN F	ATS ALS AFF	TECTED)			PA	PAGE	4	
<u> </u>	E M A	MALE											
GROUP: LEVEL (MG/KG/DAY):		1 0	1	2 10		3 20	30		. 72	5		6 75	ı
BODY - HUNCHED POSTURE - DERYDRATI ON - URINE STAIN - FECAL STAIN - REDDI SH VAGINAL DI SCHARGE	000000000000000000000000000000000000000	000000000000000000000000000000000000000	10000	00001	200000	00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000000000000000000000000000000000000000	00000	1,	111111111111111111111111111111111111111	
EYES - DARK MATERIAL AROUND EYE(S) - EYE(S) PALE IN COLOR	00	0 0	òò	0 0	$\frac{2}{1}$		66	0 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 0	3′ %	0 8	
NOSE/MOUTH - DARK MATERIAL AROUND NOSE - DARK MATERIAL AROUND MOUTH - SCAB(S) - AROUND MOUTH - MALALI GNMENT - INCI SOR(S) - BROKEN - SWELLING - UPPER LIP - SALIVATION	4000000	200000	20 00 00 00 00	0 1 1 0 0 2	3 0 0 0 0 0	0001000	2000 000 000 000 000		1010000	0 0 0 0 0 0	1/ 00/ 1/ 1/	100001	
POST- DOSE OBSERVATI ONS - SALI VATI ON - CONVULSI ONS	\ 0 0	0 0	ò ò	0 0	0/1	0	66	0 0	ò ò	0 0	1,0	1 0	
PARTURITION OBSERVATIONS - REDDI SH VAGINAL DI SCHARGE - SKIN PALE IN COLOR - ALL EXTREMITIES - EYE(S) PALE IN COLOR	000	000	000	0 0 0	000	0 0 0	000	000	000	0	2/2/2/	!	

DATA REFLECT THE TOTAL OCCURRENCE OF EACH FINDING OVER THE NUMBER OF ANIMALS EXHIBITING THE FINDING.

G STUDY IN RATS PAGE 1 TE RAMS)		4 5 6 30 75	465 468 469 22. 6 15. 2 30. 5 8 8	477 479 477 23.6 19.6 31.2 8 8	493 488 497 26.6 22.4 35.3 8 8	498 498 502 18.9 20.7 33.4 8 8	513 511 513 27. 4 20. 9 35. 5 8	526 521 525 32. 9 19. 1 39. 5
TABLE 2 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO BODY WEIGHT DATA (GRAMS)	MALE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	472 468 467 32. 2 21. 6 29. 0 8 8 8	488 475 479 33.5 19.7 33.6 8 8	510 493 498 37.6 25.9 29.9 8 8	519 503 507 36.8 27.3 29.9 8 8	537 516 525 36.3 27.5 30.2 8 8	548 532 540 39.1 28.3 33.6
SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC.		GROUP: LEVEL (MG/KG/DAY):	WEEK 1 MEAN S. D. 3	2 MEAN S. D. 3	3 MEAN S. D. 3	4 MEAN S. D. 3	5 MEAN S. D. 3 N	6 MEAN S. D.

NONE SI GNI FI CANTLY DIFFERENT FROM CONTROL

82		! ! !		1
PAGE 2		6 75	515 48. 1 8	539 53.0 8
		5	514 22.3 8	531 24.0 8
STUDY IN RATS		30	528 40.2 8	543 43.7 8
TABLE 2 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO BODY WEIGHT DATA (GRANS)	M A L E	3 20	536 39.3 8	548 41.3 8
T ERATI ON REPRODUCT WITH NICKEL S SUMMARY OF FO BOD	W	10	525 38. 9 8	532 43.9 8
A ONE-GEN		0	548 46.3	563 44.0 7
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		GROUP: LEVEL (MG/KG/DAY):	WEEK 7 MEAN S. D. N. N. N.	FBW MEAN S. D. N

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL NOTE: FBW = FINAL BODY WEIGHT.

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL

			1 1		!
PAGE 3		75	273 11. 9 8	277 16.9 8	282 15.8 8
		5	275 16.3 8	274 17.4 8	278 18.3 8
STUDY IN RATS E AMS)		30	275 16.6 8	279 15. 7 8	281 17.6 8
TABLE 2 GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO BODY WEIGHT DATA (GRANS)	F E M A L E	3 20	8.5 8	279 15.9 8	287 13.1 8
T ERATI ON REPRODUCT WITH NICKEL S SUMMARY OF FO BOD	H H	2 10	274 15.3 8	274 12. 0 8	277 17.71 8
A ONE-GEN		0	275 14.1 8	277 13.3 8	282 14.8 8
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		GROUP: LEVEL (MG/KG/DAY):	WEEK 1 MEAN S. D. N	2 MEAN S. D. N	3 MEAN S. D. N

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENI SUI	TABLE 3 ENERATI ON REPRODUCTI ON RAN WITH NICKEL SULFATE SUMMARY OF FO BODY WEIGHT	TABLE 3 E- GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO BODY WEIGHT GAIN DATA (GRAMS)	STUDY IN RATS E (GRAMS)		PAGE 1	
		M	M A L E				
GROUP: LEVEL (MG/KG/DAY):	0	10	3 20	30	5	75	! !
WEEK 1 TO 2 MEAN S. D. N	16 11. 2 8	, , , , ,	12 13.6 8		6.2 8	11.7	!
2 TO 3 MEAN S. D. N	22 6. 0 8	9. 8 8. 8	18 5. 1 8	16 4.3 8	* * 0 0 6	20 6.6 8	
3 T0 4 MEAN S. D. N	6 0 8	3. 8 8 8	10 7.0 8	11. 9 8	10 10.5 8	9.7 8	
4 TO 5 MEAN S. D. N	9. 1 8	 8 8 8	17 6.3 8	15 11.6 8	13 4.1 8	8.9 8	
5 TO 6 MEAN S. D. N	15 4.0 7	15 5.6 8	16 6.1 8	8. 1 8	$\begin{array}{c} 10 \\ 4.5 \\ 8 \end{array}$	11 12. 4 8	
6 TO 7 MEAN S. D. N	0 7.9 7	- 7 12. 2 8	9.9 8	10. 2	-8 12.2	-10 15.6 8	

SI GNIFI CANTLY DI FFERENT FROM CONTROL: ** = P<0.01

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENI SUI	T. ERATION REPRODUCT: WITH NICKEL SI WMARY OF FO BODY 1	TABLE 3 GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO BODY WEIGHT GAIN DATA (GRAMS)	STUDY IN RATS (GRAMS)		PAGE	લ
		M	M A L E				
GROUP:		2		4	2	9	! ! !
LEVEL (MG/KG/DAY):	0	10	20	30	20	75	
WEEK 7 TO 8						1 1 1 1 1 1 1 1 1 1 1	! ! !
MEAN	14	7	12	15	17	24	
S. D.	9.4	13. 3	7.6	8.9	7.0	8.9	
N	7	8	∞	∞	8	∞	
NONE SIGNIFICANTLY DIFFERENT FROM CONTROL	FROM CONTROL						!

SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC.	A ONE-GENI	T. ERATI ON REPRODUCT: WITH NICKEL SI	TABLE 3 GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO BODY WEIGHT GAIN DATA (GRAMS)	STUDY IN RATS E (GRAMS)		PAGE	က
		FEMALE	M A L E				
GROUP: LEVEL (MG/KG/DAY):	0	10	3 20	30	5 50	6 75	1 1 1 1
WEEK 1 TO 2						! ! ! ! ! ! ! !	!!!!!!
MEAN	ဇ	0	က	4	-2	4	
S. D.	8.2	8. 1	8.4	6.6	5.0	7.0	
Z	&	∞	&	∞	∞	∞	
2 T0 3							
MEAN	5	4	8	က	5	7.0	
S. D.	3.8	7.5	4.3	5.6	5.4	5. 1	
N	∞	∞	∞	∞	∞	∞	
NONE SIGNIFICANTLY DIFFERENT FROM CONTROL	T FROM CONTROL						:

SLI CLII	SLJ STUDY NO.: CLJENT: NI PERA,	VO.: 3472.3 PERA, INC.		TABLE 4 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO GESTATION BODY WEIGHT DATA (GRAMS)	TABLE 4 E- GENERATI ON REPRODUCTI ON RANGE- FI NDI NG WI TH NI CKEL SULFATE HEXAHYDRATE SUMMARY OF FO GESTATI ON BODY WEI GHT DATA	TABLE 4 TI ON RANGE-FINDII SULFATE HEXAHYDR, ON BODY WEI GHT DA	GE-FINDING STUDY IN RAT HEXAHYDRATE WEIGHT DATA (GRAMS)	22	PAGE 1
1 1	GROUP: LEVEL	GROUP: LEVEL (MG/KG/DAY):	1 0	2 10	3 20	4 30	5 50	6 75	
DAY	0	MEAN S. D. N	284 16.5 8	274 22. 7 8	283 13.6 8	284 18.8 8	274 22.6 7	280 18. 9 8	
DAY	7	MEAN S. D. N	310 18.9 8	308 13. 7 8	313 9.6 8	315 19. 2 8	310 17.8 7	312 23. 2 8	
DAY	14	MEAN S. D. N	335 20.7 8	333 17. 0 8	336 8. 7 8	335 15. 3 8	334 25.7 7	331 29. 7 8	
DAY	20	MEAN S. D. N	$\frac{416}{25.2}$	402 24. 5 8	404 14. 6 8	409 27. 9 8	397 21. 5 7	403 34. 2 8	
NONE	SIGNIF	NONE SIGNIFICANTLY DIFFERENT FROM CONTROL	RENT FROM	CONTROL					

PAGE 1				
S	6 75	32 14.2 8	19 14.5 8	71 18.8 8
G STUDY IN RAT TE DATA (GRAMS)	5 50	36 8. 6 7	24 9. 7 7	63 6. 7
TABLE 5 ONE-GENERATION REPRODUCTION RANCE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO GESTATION BODY WEIGHT GAIN DATA (GRAMS)	30	3.1 5. 2 8	21 8.5 8	74 23. 5 8
TAB ON REPRODUCTIO W TH NICKEL SUI	3 20	30 5. 8 8	24 6. 1 8	68 111. 7 8
A ONE-GENERATI V SUMMARY OF F	2 10	34 12.3 8	6. 2 8	68 14. 8 8
	0	26 8.6 8	25 4.1 8	81 13.9 8
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP: LEVEL (MG/KG/DAY):	DAY 0- 7 MEAN S. D. N	DAY 7- 14 MEAN S. D. N	DAY 14- 20 MEAN S. D. N

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL

SLI	SLI STUDY NO.:	.: 3472.3 PA INC		A ONE-GENERATI	TABLE 6 A ONE-GENERATI ON REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKET SITE HEYAHYDRATE	TABLE 6 TI ON RANGE- FI NDI N SIII FATE HEYAHYDRA	VG STUDY IN RAT	TS	PAGE 1	
				SUMMARY OF	SUMMARY OF FO LACTATION BODY WEIGHT DATA (GRANS)	BODY WEIGHT DA	ATA (GRAMS)			
1 1 1	GROUP: LEVEL (A	GROUP: LEVEL (MG/KG/DAY):	1 0	2 10	3 20	30	5 50	6 75		
DAY		MEAN S. D.	302 20.7 8	306 15. 2 7	295 22.5 8	308 18. 0 7	300 19.4 7	296 28. 1 8		
DAY	4 V 0	MEAN S. D. N	318 14. 4 8	318 17. 9 7	314 14. 4 8	320 19. 7 7	309 21. 3 7	308 20.1 6		
DAY	7 8	MEAN S. D. N	$\begin{array}{c} 325 \\ 11.4 \\ 8 \end{array}$	322 18.3 7	320 12. 1 8	322 17. 0 7	318 23.0 7	317 16.1 6		
DAY	10 N	MEAN S. D. N	335 12.8 8	333 22. 0 7	328 9.6 7	334 15. 4 7	327 12. 7 7	327 17.9 6		
DAY	14 N	MEAN S. D. N	347 14. 4 8	342 23. 2 7	345 10. 4 7	354 22. 7 7	344 20. 2 7	$340 \\ 21.5 \\ 6$		
DAY	21 N	MEAN S. D. N	345 20. 4 8	331 14. 8 7	340 12. 1 7	347 14. 5	333 18.6 7	330 22. 7 6		
NONE	SI GNI FI	NONF SIGNIFICANTIV DIFFFRENT FROM CONTROL	SENT FROM	CONTROL						

NONE SI GNI FI CANTLY DI FFERENT FROM CONTROL

Y IN RATS PAGE 1 (GRAMS)	5 50 75	9 11 .1 12.0 7 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 13 9.6 5.5 7 6	-10 -10 18.8 11.3 7 6
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO LACTATION BODY WEIGHT GAIN DATA (GRAMS)	3 20 30	20 12 6 12.0 13.9 13.1	6 2 2 10.11 8.5 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 20 6.8 13.7 9	-5 -8 - 11.6 13.2 18
A ONE-GENERATION REP WITH NI SUMMARY OF FO LACT	$\begin{matrix} 1 & 2 \\ 0 & 10 \end{matrix}$	12 11.8 7	8.5 9.6 1	11 11 8.6 7.6	8.57	- 12 9.5 7
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP: LEVEL (MG/KG/DAY):	DAY 1- 4 MEAN 16 S. D. 13. 7 N 8	DAY 4- 7 MEAN S. D. 8.	DAY 7- 10 MEAN 1 S. D. 8. N	DAY 10- 14 MEAN 11 S. D. 12. 9 N 8	DAY 14- 21 MEAN -2 S. D. 12.1 N 8

NONE SI GNI FI CANTLY DI FFERENT FROM CONTROL

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL NOTE: FOOD CONSUMPTION WAS NOT MEASURED DURING MATING (WEEK 3 TO 4).

SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC.	A ONE-GENI SUMMARY	T. ERATI ON REPRODUCT WITH NICKEL S OF FO FOOD CONSU	TABLE 8 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	STUDY IN RATS S/ANIMAL/DAY)		PAGE 2	
		H	FEMALE				
GROUP: LEVEL (MG/KG/DAY):	0	10	3 20	30	5 50	75	1 1
WEEK 1 TO 2							!
MEAN	17	16	17	17	17	17	
S. D.	1.6	1.5	1.3	1.1	1.4	2.0	
Z	∞	∞	∞	∞	∞	∞	
2 T0 3							
MEAN	17	18	18	17	17	17	
S. D.	1.6	2.7	1.1	1.4	1.6	1.3	
N	8	8	∞	∞	∞	∞	
NONE SIGNIFICANTLY DIFFERENT FROM CONTROL	FROM CONTROL						:

PAGE 1				
s AAY)	6 75	23 4.1 8	24 5. 8 8	3. 2 8
TABLE 9 GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE FO GESTATION FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	5 50	24 2.3 7	24 3.7 7	23 1.3 7
TABLE 9 TON REPRODUCTION RANGE-FINDING S' WITH NICKEL SULFATE HEXAHYDRATE STATION FOOD CONSUMPTION DATA (GR	30	2.3 8.0	2.4 8.9	25 1.4 8
TAB ON REPRODUCTION I'TH NICKEL SULMATION FOOD CON	3 20	23	23 2.0 8	23 2.7 8
A ONE-GENERATION WITH	2 10	2. 1 8	24 1.9 8	24 1.3
NWINS	0	22 2.4 8	22 2. 6 8	24 2.1 8
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP: LEVEL (MG/KG/DAY):	DAY 0- 7 MEAN S. D. N	DAY 7- 14 MEAN S. D. N	DAY 14- 20 MEAN S. D. N

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL

PAGE 1				
S /DAY)	6 75	32 7.4 6	46 7.7 6	51 6.4 6
TABLE 10 S-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE OF FO LACTATION FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	5 50	36 10.6 7	43 8. 1 7	53 4.4
TABLE 10 ION REPRODUCTI ON RANGE-FINDING SWITH NICKEL SULFATE HEXAHYDRATE CTATI ON FOOD CONSUMPTI ON DATA (4 30	33 8. 1 7	40 6. 4 7	51 6.8
TAI FON REPRODUCTION MITH NICKEL SUI CTATION FOOD CO	3 20	5.8 8 8	8.2 8	51 6.1
A ONE-GENERATI I SUMMARY OF FO LAC	2 10	59 60. 2 7	42 5. 0 7	52 4.8 7
ns	1 0	36 5.0 8	41 4.2 8	5. 5 8 8
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP: LEVEL (MG/KG/DAY):	DAY 1- 4 MEAN S. D. N	DAY 4- 7 MEAN S. D. N	DAY 7- 10 MEAN S. D. N

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL

PAGE 1		6 75	43 17.8 8	38 5.3 7	50 29.8 8	36 6.4 7	47 22. 2 8	48 25. 7 8
		5 50	18.2 8	45 18.8 8	45 12. 4 6	47 22.8 8	48 24.5 8	48 28.3 7
NDING STUDY IN RATS YDRATE (GRAMS/ANIMAL/DAY)		30	34 6.1 8	33 8	35 7.4 8	34 6. 7 8	34 6. 7 8	34 6. 6 8
TABLE 11 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	M A L E	3 20	37 7.9 8	38 9.1 8	39 7.5 8	39 6.9 8	3.7 8.8 8	35 6. 1 8
-GENERATION REPROI WITH NICKI ARY OF FO WATER CO		10	32 4. 5 8	33 4. 5 8	34 4. 8 8	35 5. 0 8	33 4. 4 8	29 6.9 8
A ONE-GEN SUMMARY		0	6.35 8	38 9.6 8	36 5.4 7	43 14. 2 7	39 11. 9	38 12. 7 7
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.		GROUP: LEVEL (MG/KG/DAY):	WEEK 1 TO 2 MEAN S. D. N	2 TO 3 MEAN S. D. N	4 TO 5 MEAN S. D. N	5 TO 6 MEAN S. D. N	6 TO 7 MEAN S. D. N	7 TO 8 MEAN S. D. N

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL NOTE: WATER CONSUMPTION WAS NOT MEASURED DURING MATING (WEEK 3 TO 4).

SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC.	A ONE-GENI SUMMARY (T. ERATI ON REPRODUCT: WITH NICKEL SI DF FO WATER CONSUI	TABLE 11 ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	STUDY IN RATS S'ANIMAL/DAY)		PAGE	82
		五 子	FEMALE				
GROUP: LEVEL (MG/KG/DAY):	0	10	20	30	5 50	6 75	1 1 1 1
WEEK 1 TO 2							
MEAN	27	26	28	29	28	29	
S. D.	5.7	6.2	4.5	4.5	7.5	6. 1	
N	8	7	∞	8	7	∞	
2 T0 3							
MEAN	26	26	29	26	28	32	
S. D.	5.8	6.9	4.4	5.2	7.7	13.2	
N	∞	7	∞	∞	7	∞	
NONE SIGNIFICANTLY DIFFERENT FROM CONTROL	FROM CONTROL						!

PAGE 1				
S. "/DAY)	75	20.3 8	53 23. 3 8	54 12. 8 6
G STUDY IN RAT TE (GRAMS/ANIMAI	5 50	42 4.7 6	45 7. 0 5	55 8.0 7
TABLE 12 GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE ' FO GESTATION WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	4 30	48 9.4 8	48 11. 0 7	62 14. 9
TAB ON REPRODUCTIO I'TH NICKEL SUL ATION WATER CO	3 20	41 6.9 8	44 8.6 8	50 10. 2 8
A ONE-GENERATI W SUMMARY OF FO GEST	2 10	40 9.9 7	$\begin{array}{c} 42\\10.1\\6\end{array}$	54 14.3
SUMM	1 0	36 6.7 8	41 10.1 8	49 7.3 8
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.	GROUP: LEVEL (MG/KG/DAY):	DAY 0- 7 MEAN S. D. N	DAY 7- 14 MEAN S. D. N	DAY 14- 20 MEAN S. D. N

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL

PAGE 1				
S. "/DAY)	6 75	60 13. 5 6	71 18.0 6	84 20. 6 6
IG STUDY IN RAT LTE L (GRAMS/ANIMAL	5 50	57 15. 5	66 12. 6 7	81 7.7 7
TABLE 13 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO LACTATION WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	30	52 13. 4	60 10. 2 7	81 13. 4 7
TAB ON REPRODUCTIO MITH NICKEL SUI ATION WATER CO	3 20	57 10.3 8	63 9. 0 8	9.8
A ONE-GENERATI W MARY OF FO LACT	2 10	59 7. 6 6	64 7. 0 7	9.3
SUM	1 0	55 9. 2 8	56 5.1 8	67 7.9 8
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP: LEVEL (MG/KG/DAY):	DAY 1- 4 MEAN S. D. N	DAY 4- 7 MEAN S. D. N	DAY 7- 10 MEAN S. D. N

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL

8 8/8 8/8 8/8 0 100.0 100.0 11	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO COPULATION, FERTILITY, PRECOITAL INTERVAL AND GESTATION LENGTH DATA	PAGE 1
8/8 8/8 8/8 8/8 100.0 10		6 75
8/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8	8/	8 8/8 100.0
3. 5 2. 8 2. 1 1. 9 0. 9 1. 1 8 8 8	8/	8 / 8 100.0
99 0 99 5 99 1		0.9 8
0.0 0.8 0.4 4.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	22.1 22.1 22.4 0.4 0.4 0.5 8 7	22.5 0.5 8

FERTILITY INDEX = NO. OF GRAVID FEMALES / NO. OF ANIMALS PAIRED WITH SUCCESSFUL COPULATION X 100.

CLIENT: NIPERA, INC.	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO GROSS NECROPSY OBSERVATIONS	ANGE- E HEX ROPSY	AHYDI OBSI	RVATI	SNO	A S	2						
	FOUND DEAD OR EUTHANIZED MORIBUND	NIZED	MORI	BUND									
				W A	LE					FE	1 A L	Н	
GR	GROUP: LEVEL (MG/KG/DAY):	0	2 10	3 20	30	50	6 75	0	10	3 20	4 30	5	6
NUMBER OF ANIMALS IN DOSE GROUP NUMBER OF ANIMALS FOUND DEAD OR EUTHANIZED MOF	MORI BUND		80	80		80	80	8		. 0	8 0		80
EXTERNAL APPEARANCE - HAI RCOAT - DARK MATERI AL - HAI RCOAT - WET MATTI NG			0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0 0
BRAI N - HEMORRHAGE		0	0	0	0	0	0	0	0	-	0	0	0
ESOPHAGUS - PERFORATI ON		-	0	0	0	0	0	0	0	0	0	0	0
LUNGS - MOTTLED		0	0	0	0	0	0	0	0	-	0	0	0
OVARIES - CORPORA LUTEA - REGRESSING		0	0	0	0	0	0	0	0	-	0	0	0
TRACHEA - CONTENT ABNORMAL		0	0	0	0	0	0	0	0	-	0	0	0
UTERINE HORNS -IMPLANTATION SCARS PRESENT		0	0	0	0	0	0	0	0	1	0	0	0
THORACI C CAVITY -CONTENT ABNORMAL -FLUID CONTENTS		0 1	0	0	0	0 0	0	0	0 0	0 0	0	0	0

SLI STUDY NO.: 3472.3 A ONE-GENEI CLI ENT: NI PERA, INC. SUI	GENERATI ON REPRODUCTI ON RANGE- FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO GROSS NECROPSY OBSERVATIONS	15 ANGE- E HEX ROPSY	FI NDI AHYDR OBSE	NG ST ATE RVATI	UDY I	N RAT	S				P.	PAGE	∾	
	FOUND DEAD OR EUTHANIZED MOKIBUND	NI ZED	MOKI	BUND										
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	! ! ! !	MALE			 	 !		F E M A L E	A L]			
GROI	ROUP:	1 2	~	က	4	2	9	-	8	က	4	2	9	
LEVI	LEVEL (MG/KG/DAY):	0	10	30	30		75	0	0 10	20	30	20	75	
NUMBER OF ANIMALS IN DOSE GROUP	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: - - -		: - - -										
2	IORI BUND	-	0	0	0	0	0	0	0	-	0	0	0	
SUBCUTANEOUS TI SSUE - HEWORRHAGI C AREA		0	0	0	0	0	0	0	0	-	0	0	0	
- ЕDЕМА		-	0	0	0	0	0	0	0	0	0	0	0	

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	TABLE 15 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO GROSS NECROPSY OBSERVATIONS	E 15 RANGE- ATE HE? ECROPSY	- FI NDI KAHYDR Y OBSE	NG ST ATE RVATI	UDY I	N RATS	S				PA	PAGE	က
	SCHEDULED I	EUTHANASIA	ASIA										
	GROUP: LEVEL (MG/KG/DAY):	0	2 10	M A 3 20	L E 4 30	5		0 1	2 10	F E M 3 20	A L E 4 30	5 50	
NUMBER OF ANIMALS IN DOSE GROUP NUMBER OF ANIMALS EXAMINED AT SCHEDULED	ULED EUTHANASIA	8 7	∞ ∞	∞ ∞				∞ ∞	~ ~ ~	8 7	8 8 b	- 8 8 C	8 9 d
NO REMARKABLE FINDINGS		9	2	7	4	က	3	0	0	0	0	0	0
EXTERNAL APPEARANCE - HAIRCOAT - DARK MATERIAL - HAIRCOAT - WET MATTING - HAIRCOAT - HAIRLOSS - TAIL - ENLARGEMENT		0000	0 0 1 0	0000	0 0 0 1	0000	0000	0000	0 0 1 0	0080	0 0 1 0	0 0 0 0	0 0 1 1
ABDOMI NAL CAVI TY - ADHESI ON		0	0	0	0	0	1	0	0	0	0	0	1
KI DNEYS - DI LATED PELVI S - ENLARGED - CALCULI - CYST(S) - TAN AREA(S)		00000	00010	10000	00000	00 1 1 2	-0000	00000	00000	00000	00000	00000	0 0 0 0 1
2 INCLINES FEMAIF #299 THAT WAS FITTHANIZED ON IACTATION DAY O AFTED TOTAL	THANIZED ON LACTATION DAY O AFT	TEP TO	. –	SSOI MELLI	2201	 	 				 	 	

a INCLUDES FEMALE #229 THAT WAS EUTHANIZED ON LACTATION DAY O AFTER TOTAL LITTER LOSS.

b INCLUDES FEMALE #204 THAT WAS EUTHANIZED ON GESTATION DAY 25 (POST-BREEDING DAY 25 - FAILED TO DELIVER AND WAS EUTHANIZED 25 DAYS AFTER EVIDENCE OF MATING WAS DETECTED).

c INCLUDES FEMALE #227 THAT WAS EUTHANIZED ON STUDY DAY 54 (POST-BREEDING PERIOD DAY 25 - NO EVIDENCE OF MATING, FAILED TO DELIVER AND WAS EUTHANIZED 25 DAYS AFTER COMPLETION OF THE MATING PERIOD).

d INCLUDES FEMALE #213 THAT WAS EUTHANIZED ON LACTATION DAY 2 AND FEMALE #245 THAT WAS EUTHANIZED ON LACTATION DAY 1 AFTER TOTAL LITTER LOSS.

	PAGE				1 1 1	Ξ	5	50
						MAL	3 4	30
					1 1 1 1 1	FEMALE	က	20
							8	0 10 20 30
							1	0
	LS						9	75
	IN RA					-	5	20
	TUDY 1		I ONS			MALE	4	10 20 30 50 75
	ING S	RATE	ERVAT		1 1 1 1 1	M	3 4	20
	FIND	:XAHYD	Y OBS	ASIA			2	10
TABLE 15	RANGE	VTE HE	ECROPS	EUTHAN	1 1 1 1 1	'	-	0
TABI	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS	WI TH NI CKEL SULFATE HEXAHYDRATE	SUMMARY OF FO GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA			GROUP:	LEVEL (MG/KG/DAY):
	SLI STUDY NO.: 3472.3	CLI ENT: NI PERA, INC.						

9

PAGE

LEVEL (MG/KG/DAY):	0	10	20	30	20	75	0	10	20	30	, 09	75
NUMBER OF ANIMALS IN DOSE GROUP NUMBER OF ANIMALS EXAMINED AT SCHEDULED EUTHANASIA	8 7							8 8 8 8	8 2	8 p	∞ ∞	р 8 8
LIVER - PALE - ACCENTUATED LOBULAR MARKINGS - TAN AREA(S)	000	000	0 0 0	000	0 0 0	0 0 0	000	1 0 0	0 0 1	0 0 0	000	1 0
LUNGS - PALE - MOTTLED - DARK RED FOCI - FOCI - NODULE(S)	00000	00000	00000	0 0 0 0 0	0 0 0 0 0	00800	00000	0 1 0 0	0 1 0 0 0 0	0 0 0 0 0	00001	1 1 0 2 0
ORAL CAVITY - I NCI SOR(S) - BROKEN	-	0	0	0	0	0	0	0	0	0	0	0
SKI N - SCABBI NG	0	0	0	0	0	0	0	0	0	0	-	0
TINCLINDE EENMIE #990 TUAT WAS EITHUANIZED ON IACTATION DAY O AE	AETED TOTAL	1 1 1 4 1	ייייין.	1000	! ! !	! ! ! ! ! !	1	! ! !	! ! !	! ! !		! ! !

a INCLUDES FEMALE #229 THAT WAS EUTHANIZED ON LACTATION DAY O AFTER TOTAL LITTER LOSS.

b INCLUDES FEMALE #204 THAT WAS EUTHANIZED ON GESTATION DAY 25 (POST-BREEDING DAY 25 - FAILED TO DELIVER AND WAS EUTHANIZED 25 DAYS AFTER EVIDENCE OF MATING WAS DETECTED).

c INCLUDES FEMALE #227 THAT WAS EUTHANIZED ON STUDY DAY 54 (POST-BREEDING PERIOD DAY 25 - NO EVIDENCE OF MATING, FAILED TO DELIVER AND WAS EUTHANIZED 25 DAYS AFTER COMPLETION OF THE MATING PERIOD).

d INCLUDES FEMALE #213 THAT WAS EUTHANIZED ON LACTATION DAY 2 AND FEMALE #245 THAT WAS EUTHANIZED ON LACTATION DAY 1 AFTER TOTAL LITTER LOSS.

TABLE 15	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS	WI TH NI CKEL SULFATE HEXAHYDRATE	SUMMARY OF FO GROSS NECROPSY OBSERVATIONS
	3472.3	I NC.	
	SLI STUDY NO.: 3472.3	CLI ENT: NI PERA, INC.	

5

PAGE

<
-
U
<
Z
<
FIFTHANACI
⊑
Ξ.
Ц
_
Ľ
_
Ε
7
CHEDI
ⅎ
ξ
ũ
•

		: :		E				. E	H M	- H		-
GROUP: LEVEL (MG/KG/DAY):	1 0	2 10	3 20		5 50	6 75	1 0		3 3 3	30 5	5 6 50 75	0.70
NUMBER OF ANIMALS IN DOSE GROUP NUMBER OF ANIMALS EXAMINED AT SCHEDULED EUTHANASIA	8 7		∞ ∞	∞ ∞	∞ ∞		∞ ∞	8 8 8	8 7	8 8 b		- 8 8 d
SMALL INTESTINE - CONTENT ABNORMAL - REDDENED MUCOSA	0 0	0 0	0 0	0 0	0 0	0 0	0	1 0	0 0		1 0	0.0
STOMACH - CONTENT ABNORMAL - REDDENED	0 0	0	0 0	0	0 0	0 0	0	1 0	0 0	0 0	0 0	0 1
TESTES - DI SCOLORED - SMALL	0 0	0 0	0 0	0 0	0 0		0	0 0	0 0	0 0	0 0	0.0
THYMIS - FOCI	0	0	0	0	0	83	0	0	0	0	0	0
THYROI D - PALE	0	0	0	0	0	0	0	1	0	0	0	~
a INCLUDES FEMALE #229 THAT WAS EUTHANIZED ON LACTATION DAY 0 AF	O AFTER TOTAL	'AL LI	TTER	LOSS.	! !		! ! !	! ! !		! !	1	! !

a INCLUDES FEMALE #229 THAT WAS EUTHANIZED ON LACTATION DAY 25 (POST-BREEDING DAY 25 - FAILED TO DELIVER AND WAS EUTHANIZED 25 DAYS AFTER EVIDENCE OF MATING WAS DETECTED).

c INCLUDES FEMALE #227 THAT WAS EUTHANIZED ON STUDY DAY 54 (POST-BREEDING PERIOD DAY 25 - NO EVIDENCE OF MATING, FAILED TO DELIVER AND WAS EUTHANIZED 25 DAYS AFTER COMPLETION OF THE MATING PERIOD).

d INCLUDES FEMALE #213 THAT WAS EUTHANIZED ON LACTATION DAY 2 AND FEMALE #245 THAT WAS EUTHANIZED ON LACTATION DAY 1 AFTER TOTAL LITTER LOSS.

SLI STUDY NO.: 3472.3 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS CLIENT: NIPERA, INC. SUMMARY OF FO GROSS NECROPSY OBSERVATIONS	SCHEDULED EUT	er south	GROUF: LEVEL (MG/KG/DAY):	NUMBER OF ANIMALS IN DOSE GROUP NUMBER OF ANIMALS EXAMINED AT SCHEDULED EUTHANASIA	URETIERS - DI STENDED - CALCULI	URI NARY BLADDER - CONTENT ABNORMAL - DI STENDED - CALCULI - THI CKENED	UTERI NE HORNS - I MPLANTATI ON SCARS PRESENT - NONGRAVI D AMMONI UM SULFI DE NEGATI VE - RETAI NED FETUS (ES) - PRESENT - RESORPTI ON (S) PRESENT
15 ANGE- F E HEXA ROPSY	EUTHANASIA		0 1	8 7	0 0	0000	0000
I NDI NC HYDRAT OBSERV	ΙA		2 .0 20		00	0000	0000
STUD E ATION		MAL	30	0000	0 0	1000	0000
Y IN R.			50	∞ ∞		8	0000
ATS			6 75		0 0	0000	0000
		· · · · · ·	0	. ∞ ∞	0 0	0000	8000
		1	10	& &	0 0	0000	8000
		E	30 20	8 7	0 0	0000	7 0 0
PAGE		. E	30	8 p	0 0	0000	7 0 1 1 1
Ħ			50 7	- 0 0 0 0 0	0 0	0000	7 1 1 0 0
9		:	o 75	- 8 0 0	0 0	0000	8000

р

a INCLUDES FEMALE #229 THAT WAS EUTHANIZED ON LACTATION DAY O AFTER TOTAL LITTER LOSS.

b INCLUDES FEMALE #204 THAT WAS EUTHANIZED ON GESTATION DAY 25 (POST-BREEDING DAY 25 - FAILED TO DELIVER AND WAS EUTHANIZED ON STUDY DAY 54 (POST-BREEDING PERIOD DAY 25 - NO EVIDENCE OF MATING, FAILED TO DELIVER AND WAS EUTHANIZED 25 DAYS AFTER COMPLETION OF THE MATING PERIOD).

d INCLUDES FEMALE #227 THAT WAS EUTHANIZED ON STUDY DAY 2 AND FEMALE #245 THAT WAS EUTHANIZED ON LACTATION DAY 1 AFTER DINCLUDES FEMALE #213 THAT WAS EUTHANIZED ON LACTATION DAY 2 AND FEMALE #245 THAT WAS EUTHANIZED ON LACTATION DAY 1 AFTER

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE SUMMA	TABLE 16 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FO IMPLANTATION AND POST-IMPLANTATION LOSS DATA	TABLE 16 ION REPRODUCTION RANGE-FINDING S WITH NICKEL SULFATE HEXAHYDRATE IMPLANTATION AND POST-IMPLANTAT	GE- FI NDI NG STU HEXAHYDRATE ST- I MPLANTATI O	DY IN RATS IN LOSS DATA		PAGE	-
GROUP: LEVEL (MG/KG/DAY):	0	2 10	3 20	4 30	5 50	6 75		
IMPLANTATION SCAR COUNT MEAN S. D. N	16.4	15. 1 3. 9 8	14.8 2.6 8	15.4	15.4	14.8 3.2 8		1 1 1 1
NUMBER OF LIVE PUPS (DAY 0) MEAN S. D. N	16. 0 1. 3 8	12. 5 a 6. 2 a 8	13. 3 8 8	13. 1 2. 0 7	12. 7 2. 3 7	10.0 a 4.5 8		
POST-IMPLANTATION LOSS MEAN S. D. N	0.4 0.7 8	5. 2 8 4 8	1. 1. 8 6 8	2.3*	2.7** 2.0 7	4. 8. 8. 8. 8. 8.		
SIGNIFICANTLY DIFFERENT FROM CONTROL (MANN-WHITNEY U TEST): NOTE: IMPLANTATION SCAR COUNT MINUS THE NUMBER OF LIVE PUP A INCLUDES ONE FEMALE WITH TOTAL LITTER LOSS ON LACTATION	CONTROL (MAN NT MINUS THE FOTAL LITTER	NUMBER OF LIVE LOSS ON LACTAT	ST): * = P<0.05; ** PUPS (DAY 0) EQUALS ION DAY 0.	05; ** = P<0.01 EQUALS POST-IMP	N-WHITNEY U TEST): * = P<0.05; ** = P<0.01 NUMBER OF LIVE PUPS (DAY 0) EQUALS POST-IMPLANTATION LOSS. LOSS ON LACTATION DAY 0.	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENERATION WITH WITH	TABLE 17 GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FI PUP VIABILITY	7 NGE- FI NDI NG STUI HEXAHYDRATE VI ABI LI TY	OY IN RATS		PAGE 1
		LACTATION DAY 0	AY 0			
GROUP: LEVEL (MG/KG/DAY):	0	10	3 20	30	5 50	6 75
NO. DEAD	T	12**	10 * * 10	10 * * * * * * * * * * * * * * * * * * *	4	23**
NO. LI VE	128	100	106	62	89	80
NO. LITTERS WITH LIVE OFFSPRING	∞	7	∞	7	7	7
MEAN LIVE LITTER SIZE a	16.0	14. 3	13. 3	13.1	12.7	11.4**
SEX RATIO (MALE: FEMALE)	65: 63	46: 54	49: 57	45: 47	34: 55	48: 32
CIONIEL CANTRIX DI DEDDENT IDON CONTROL: **	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

SI GNI FI CANTLY DI FFERENT FROM CONTROL: ** = P<0.01NOTE: NO. DEAD = TOTAL PUPS FOUND DEAD, MI SSI NG AND/OR CANNI BALI ZED. a I NCLUDES ONLY FEMALES WI TH LIVE PUPS ON LACTATI ON DAY 0.

CROUP: LEVEL (ME/KG/DAY); 1 2 3 4 5 6 75 75 75 75 75 75	LI STUDY NC LIENT: NIPI	SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE- GENERATI ON WI TH SU	TABLE 17 I ON REPRODUCTION RANCE- FINDING WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FI PUP VIABILITY	TABLE 17 - GENERATI ON REPRODUCTI ON RANGE-FI NDING STUDY IN RATS WITH NI CKEL SULFATE HEXAHYDRATE SUMMARY OF F1 PUP VIABILITY	UDY IN RATS		PAGE	8
CROUP: CROUP: 1 2 3 4 5 LEVEL (MC/KG/DAY): 0 10 10 20 30 30 50 1 NO. ALIVE/NO. PUPS PERCENT 126/128 100/100 105/106 92.92 92 88/89 71 4 NO. ALIVE/NO. PUPS PERCENT 126/128 100/100 103/106 91/92 88/89 71 4 NO. ALIVE/NO. PUPS PERCENT 64/64 54/54 63/63 56/56 56/56 48 7 NO. ALIVE/NO. PUPS PERCENT 63/64 54/54 63/63 56/56 56/56 48 14 NO. ALIVE/NO. PUPS PERCENT 98.4 100.0				DURING LACT	rati on				
1 NO. ALI VE/NO. PUPS 126/128 100/100 105/106 92/ 92 98 / 99 77 4 NO. ALI VE/NO. PUPS 126/128 100/100 103/106 99.1 100.0 99.1 100.0 98.9 71 4 NO. ALI VE/NO. PUPS 64/64 54/54 63/63 56/56 56/56 56/56 48/89 71 11 ON ALI VE/NO. PUPS 63/64 54/54 63/63 56/56 56/56 48/89 71 7 NO. ALI VE/NO. PUPS 63/64 54/54 63/63 56/56 56/56 48/56 48/56 7 NO. ALI VE/NO. PUPS 62/64 54/54 63/63 56/56 56/56 48/56 48/56 14 NO. ALI VE/NO. PUPS 62/64 54/54 55/63 56/56 56/56 48/56 48/56 48/56 48/56 48/56 48/56 48/56 48/56 48/56 48/56 48/56 48/56 48/56 48/56 48/56 48/56 48/56 <t< td=""><td>GROUP: LEVEL (</td><td>(MG/KG/DAY):</td><td>0</td><td>10</td><td>3 20</td><td>30</td><td>5 50</td><td>75</td><td>1 1 1 1</td></t<>	GROUP: LEVEL ((MG/KG/DAY):	0	10	3 20	30	5 50	75	1 1 1 1
Hander Harden Ha	DAY 1	NO. ALI VE/NO. PUPS PERCENT	126/128 98. 4	100/100	105/106 99.1	92/92	88/89	76/80	! ! !
4 NO. ALI VE/NO. PUPS 64/ 64 percent 54/ 54 percent 63/ 63 percent 66/ 56 percent 56/ 56 percent<	DAY 4 BEFORE SELECTI ON	NO. ALI VE/NO. PUPS PERCENT	126/128 98. 4	100/100	103/106 97.2	91/ 92 98. 9	88 / 89 98. 9	71/80 88.8**	
7 NO. ALI VE/NO. PUPS 63 64 54 54 63 65 56 56 56 56 56 100.0 14 NO. ALI VE/NO. PUPS 62 64 54 54 54 55 63 56 56 56 56 56 56 56 56 56 56 56 56 56	DAY 4 AFTER SELECTI ON	NO. ALI VE/NO. PUPS PERCENT	64/ 64 100. 0	54/54 100.0	63/63 100.0	56/ 56 100. 0	56 / 56 100.0	48/ 48 100. 0	
14 NO. ALI VE/NO. PUPS 62/ 64 54/ 54 55/ 63 56/ 56 56/ 56 56/ 56 100.0 PERCENT 96.9 100.0 87.3 100.0 100.0 21 NO. ALI VE/NO. PUPS 62/ 64 54/ 54 55/ 63 56/ 56 56/ 56 100.0	DAY 7	NO. ALI VE/NO. PUPS PERCENT	63/ 64 98. 4	54/54 100.0	63/63 100.0	56/56 100.0	56 / 56 100.0	48/ 48 100. 0	
21 NO. ALI VE/NO. PUPS 62/64 54/54 55/63 56/56 56/56 56/56 PERCENT 96.9 100.0 87.3 100.0 100.0	DAY 14	NO. ALI VE/NO. PUPS PERCENT	62/ 64 96. 9	54/54 100.0	55/ 63 87. 3	56 / 56 100.0	56 / 56 100.0	48/ 48 100. 0	
	DAY 21	NO. ALI VE/NO. PUPS PERCENT	62/ 64 96. 9	54/54 100.0	55/ 63 87. 3	56 / 56 100.0	56 / 56 100.0	48/ 48 100. 0	

SLI STUDY NO.: 3472.3 A ON CLIENT: NIPERA, INC. SUMMARY OF F1	E- GENERAT PUP OBSER	TABLE 18 TON REPRODUCTION RANGE-FINDING WITH NICKEL SULFATE HEXAHYDRATE WATIONS DURING LACTATION (OCCUR	s ige- finding S' hexahydrate ktion (occurri	NDING STUDY IN RATS YDRATE (OCCURRENCE/ANIMALS AFFECTED)	AFFECTED)		PAGE 1	
	GROUP: LEVEL (MG/KG/DAY):	1 0	2 10	3 20	30	5 50	6 75	!
NORMAL - NO REMARKABLE OBSERVATIONS		404/124	354/100	354/104	337/ 91	332/ 88	278/ 71	! !
DEAD - CANNI BALI ZED - FOUND DEAD - MI SSING - PRESUMED CANNI BALI ZED - CULLED ON SCHEDULED DAY		1/ 1 2/ 2 2/ 2 62/ 62	10/ 10 2/ 2 0/ 0 46/ 46	0/0 $11/11$ $2/2$ $40/40$	0/ 0 10/ 10 1/ 1 35/ 35	0/ 0 4/ 4 1/ 1 32/ 32	4/ 4 28/ 28 0/ 0 23/ 23	
ACTI VI TY - GASPI NG		0 /0	0 /0	0 /0	0 /0	1/ 1	2 / 2	
BODY - APPARENT UMBILICAL HERNIA - BENT TAIL - CONSTRICTED AREA(S) - HAI RLOSS - LACERATION(S) - PUP COOL TO THE TOUCH - PUP PALE IN COLOR - PUP PURPLE IN COLOR - PUP SMALL IN SIZE - SCAB(S) - SUBCUTANEOUS HEMORRHAGE(S) - TAIT TIP ARSENT		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0000 0000 0000 0000 0000 0000 0000	0100100100	63 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100000	

TIP ABSENT

3/ 2 0/ 0 0/ 0 0/ 0

DATA REFLECT THE TOTAL OCCURRENCE OF EACH FINDING OVER THE NUMBER OF ANIMALS EXHIBITING THE FINDING. NOTE:

SLI STUDY NO.: CLIENT: NIPERA,	r.: 3472.3 RA, INC.		A ONE-GENERATION RI WITH I SUMMARY OF FI PI	TABLE 19 A ONE-GENERATI ON REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF F1 PUP WEIGHTS DURING LACTATION (GRAMS)	NDING STUDY IN RATS (YDRATE (CTATION (GRAMS)		PAGE 1
GROUP: LEVEL (MC/KG/DAY):	 KG/DAY):	1 0	2 10	3 20	30	5 50	6 75
DAY 1	MEAN S. D. C	6. 6 0. 39	7.2 1.23 7	6.4 0.71 8	7.0 0.48	7.2 0.33 7	6.6 0.82 7
DAY 4 BEFORE SELECTI ON	MEAN S. D. N	9.2	10.4	9.4	9.8	10.2	10.1
DAY 4 AFTER SELECTI ON	MEAN S. D. N	9.5	10.4	9.3 8	9.9	10.2	10.1
DAY 7	MEAN 1 S. D. 1 N	15.3 1.01 8	17.1 2.41 7	15.2 1.56 8	15. 6 1. 96 7	15. 7 1. 68 7	16.0 1.73 6
DAY 14	MEAN 3 S. D. 1 N	31. 9 1. 49 8	33.7 3.26 7	31.2 3.24 7	31.5 2.23 7	31.2 3.12 7	31. 4 2. 82 6
DAY 21	MEAN 5 S. D. 1 N	51.5 1.91 8	55. 1 5. 96 7	50.8 4.71 7	51.0 4.58 7	50.2 6.67	49.8 5.39 6
NONE SI GNI FI CANTLY DI FFERENT FROM CONTROL	CANTLY DIFF	FERENT FROM	M CONTROL				

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	TABLE 20 A ONE-GENERATI ON REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF F1 PUP GROSS NECROPSY OBSERVATIONS	RANGE TE HE	- FI ND XAHYD ROPSY	ING S' RATE OBSE	rudy Rvati	IN RAT	S				P.	PAGE	-	
	FOUND DEAD	DEAD												!
		i 		MA	LE					FEM	A L	H		1
	GROUP: LEVEL (MG/KG/DAY):	0	$\frac{2}{10}$	3	4 30	50	6 75	0	$\frac{2}{10}$	3	30	50	6	
NUMBER OF ANIMALS FOUND DEAD		1	-	9	9	7	17	1	-	5	4	2	1	
NO REMARKABLE FINDINGS		0	0	0	0	0	1	0	0	1	0	0	0	
EXTERNAL APPEARANCE - TAIL - CONSTRICTION		-	0	0	0	0	0	0	0	0	0	0	0	
EYES - ANOPHTHALMI A - MI CROPHTHALMI A		0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 0	
HEAD - EXENCEPHALY - RHI NOCEPHALY		0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0		0 0	
HEART - TRANSPOSI TI ON OF GREAT VESSELS		0	0	0	0	0	0	0	0	0	0	0	-	
KI DNEYS -RENAL PAPILLA(E) INCOMPLETELY DEVELOPED -RENAL PAPILLA(E) NOT DEVELOPED		0	0 0	0 0	0 0	0 0	3 0	0 0	0 0	0 0	0 0	1 0	0 0	
LI VER - PALE		0	0	0	0	0	1	0	0	0	0	1	0	
LUNGS - ATELECTASI S		0	0	5	9	0	«	-	0	8	8	- :	6	

SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC.	TABLE 20 A ONE-GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAIYDRATE SUMMARY OF F1 PUP GROSS NECROPSY OBSERVATIONS	TABLE 20 TI ON RANGE SULFATE HE GROSS NEC	- FI ND] XAHYD] ROPSY	ING ST RATE OBSEI	TUDY	IN RA	SI				<u>L</u>	PAGE	Q
	FOUND DEAD	DEAD											
				M A	Ξ	: :	! ! ! ! ! !			F E M A I	I A L	. н	
	GROUP: LEVEL (MG/KG/DAY):	0	2 10	3	4 30	50	6 75	0	2 10	3	4 30	50	6 75
NUMBER OF ANIMALS FOUND DEAD			-	9	9	5	17		-	5	4	2	11
MULTIPLE ANOMALIES - SHORTENED TORSO		0	0	0	0	П	0	0	0	0	0	0	0
SKI N - SUBCUTANEOUS EDEMA		0	0	0	0	0	0	0	0	0	1	0	0
STOMACH - MI LK NOT PRESENT		0	1	7.	9	П	14	-	1	1	4	82	10
TRACHEA - CONTENT ABNORMAL		0	0	0	0	0	0	0	0	1	0	0	0
URETERS - DI STENDED		-	0	0	-	-	8	0	0	0	1	1	8

SLI STUDY NO.: 3472.3 A CLI ENT: NI PERA, INC. SUMMARY OF F1	TABLE 21 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE OF F1 SURVIVAL AND CLINICAL OBSERVATIONS (OCCURRENCE/ANIMALS AFFECTED)	TABLE 21 UCTION RAN L SULFATE L OBSERVAT	E 21 RANGE- ATE HEX RVATI ON	FI NDI N AHYDRA S (OCC	G STUDY TE URRENCE	IN F	ATS MLS AF	FECTE	(a			PAGE	-	
		MALE		1										
	GROUP: LEVEL (MG/KG/DAY):	 	0		2 10	C X	3 20	1 1 1 1 1	30	 	5 50	 	6	ı !
NORMAL - NO CLI NI CAL SI GNS		35/		39/		37/		39/		38/	. &	40/	∞	1
DEAD - SCHEDULED EUTHANASIA		8	∞	8	∞	8	∞	8	∞	8	∞	8	∞	
EXCRETA/EMESIS - SOFT STOOLS		/0	0	/0	0	/0	0	1/	-	/0	0	/0	0	
BODY - SCAB(S) - TAIL		/0	0	\'0	0	/0	0	/0	0	1/	1	/0	0	
EYES -CORNEAL OPACITY - RIGHT EYE -MALPOSITIONED PUPIL - RIGHT EYE		4/0	1 0	\ 0 0	0 0	\ 0 0	0 0	00	0 0	0/1	0 1	0	0 0	
POST-DOSE OBSERVATIONS - SALIVATION		/0	0	/0	0	\' 0	0	/0	0	/0	0	3/	က	
NOTE: DATA REFLECT THE TOTAL OCCURRENCE OF FACH FINDING OVER THE NIMBER OF ANIMALS EXHIBITING THE FINDING	IIRRENCE OF FACH FINDING OV	FR THE	NIMBER	OF AN	I MAI.S E	XHI RI	TING 1	- HH.	NDI NG	 	 	 	 	,

NOTE: DATA REFLECT THE TOTAL OCCURRENCE OF EACH FINDING OVER THE NUMBER OF ANIMALS EXHIBITING THE FINDING.

SLI STUDY NO.: 3472.3 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS CLIENT: NIPERA, INC. SUMMARY OF FI SURVIVAL AND CLINICAL OBSERVATIONS (OCCURRENCE/ANIMALS AFFECTED)	TABI UCTI ON I. SULF I. OBSE	TABLE 21 TI ON RANGE-F SULFATE HEXA OBSERVATI ONS	TINDING HYDRATE (OCCUR	STUDY IN RA	ATS ALS AFF	ECTED)		PAGE	82
	FEM	FEMALE	1						
GROUP: LEVEL (MG/KG/DAY):	1 1 1 1 1	0	10	3 20	3 20	30	5 50	 	6 75
NORMAL - NO CLI NI CAL SI GNS	39/ 8		39/8	35/ 8		40/ 8	40/ 8	40/ 8	. &
DEAD - SCHEDULED EUTHANASIA	8	∞	8 /8	8	∞	8 /8	8 /8	8	∞
BODY -SCAB(S) - TAIL	/0	0	0 /0	72	_	0 /0	0 /0	/0	0
POST- DOSE OBSERVATI ONS - SALI VATI ON	0 /0	0	0 /0	0 /0	0	0 /0	1/ 1	/2	1
NOTE: DATA REFLECT THE TOTAL OCCURRENCE OF EACH FINDING OVER THE NUMBER OF ANIMALS EXHIBITING THE FINDING.	ER THE	NUMBER	OF ANIA	M.S EXHIBIT	LI NG TH	E FINDING			1 1 1 1 1 1 1 1 1

1		 	 - -															
PAGE		6 75		54	7.0	∞		81	8. 2	∞		134	14. 4	∞		192	26.0	∞
		5 50		53	13.7	∞		79	16.2	∞		134	23.6	8		196	30.5	∞
STUDY IN RATS E RAMS)		30		57	5.5	&		82	13.6	∞		141	19.0	&		204	20.4	∞
TABLE 22 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FI BODY WEIGHT DATA (GRAMS)	M A L E	3 20		54	4.3	∞		88	8.6	∞		146	14.8	8		208	21. 4	∞
T. ERATI ON REPRODUCT: WITH NICKEL SI SUMMARY OF F1 BOI	Μ	10		62	5.0	∞		91	6.9	∞		149	11.3	∞		215	11.6	∞
A ONE-GEN		0		55	3.8	7		80	12.1	∞		133	19.0	∞		194	26.1	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		GROUP: LEVEL (MG/KG/DAY):	WEEK 1		S. D.	N	02	MEAN	S. D.	N	က	MEAN	S. D.	N	4	MEAN	S. D.	Z

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL

TABLE 22 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FI BODY WEIGHT DATA (GRAMS)	F E M A L E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		53 60 52 53	6.8 4.9 4.7	8 8		84 82 72	4 7.0 9.7 12.3 8.8	& &		129 125 117	7.3 10.4 15.7 13.	&	154 167 160 151 155	11.5	∞
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.		GROUP: LEVEL (MG/KG/DAY):	WEEK 1	MEAN			23	MEAN	S. D. 10. 4		ო	MEAN 118		N	MEAN 15		

NONE SI GNI FI CANTLY DIFFERENT FROM CONTROL

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL

			! !					!
PAGE 1		6 75	27	.υ. ∞ ∞	53	7. 8	28	13.3
		5 50	26	∞ ∞ ∞	56	7.5	61	7.3
STUDY IN RATS (GRAMS)		30	26	11.1	59	5.7	63	5.7
TABLE 23 GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF F1 BODY WEIGHT GAIN DATA (GRANS)	M A L E	3 20	35	7.1	57	5.3 8	62	တေတ တေ
TABLE 23 ENERATI ON REPRODUCTI ON RAN WITH NICKEL SULFATE SUMMARY OF FI BODY WEIGHT	Μ	2 10	29	10. 0 8	58	4.9 8	99	
A ONE-GEN		0	29	5.3	53	% % %	61	7.9
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		GROUP: LEVEL (MG/KG/DAY):	WEEK 1 TO 2 MEAN	S. D. N	2 T0 3 MEAN	S. D. N	3 TO 4 MEAN	S. D.

			! !			!
PAGE 2		6 75	5.9	o 643	7. 9 8	35 10. 2 8
		5 50	23	43	7. 1	36 6.0 8
STUDY IN RATS E (GRAMS)		30	20 10.9	45	4 . ဃ જ	6. 4 8 4
TABLE 23 TON REPRODUCTION RANGE-FINDING STUDY WITH NICKEL SULFATE HEXAHYDRATE Y OF FI BODY WEIGHT GAIN DATA (GRAMS)	F E M A L E	3 20	30	43	5. 7. 8	35 4.0 8
TABLE 23 GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULEATE HEXAHYDRATE SUMMARY OF FI BODY WEIGHT GAIN DATA (GRAMS)	F E	2 10	9. 4 9. 4	45	 8 8	38 6.5 8
A ONE-GEN		0	25 5.4	43	4. 0 8	37 3.7 8
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		GROUP: LEVEL (MG/KG/DAY):	WEEK 1 TO 2 MEAN S. D.	$\begin{array}{ccc} 2 & TO & 3 \\ MEAN \end{array}$	S. D. N 3 T0 4	MEAN S. D. N

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL

SLI STUDY NO.: 3472.3 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS ULIENT: NIPERA, INC. SUMMARY OF FI GROSS NECROPSY OBSERVATIONS	E 24 RANGE- ATE HEX ECROPSY	FI ND (AHYD) 7 OBS)	ING ST RATE ERVATI	TUDY 1	N RAT	S				PA	PAGE	1
SCHEDULED EUTHANASI A	EUTHAN/	ASI A										
GROUP: LEVEL (MG/KG/DAY):	- 0	2 10	M A 3	L E 4 30	5 50	6 75	- 0	2 10	F E M	M A L E 4 30 (5 5 50	
NUMBER OF ANIMALS IN DOSE GROUP NUMBER OF ANIMALS EXAMINED AT SCHEDULED EUTHANASIA	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	. ∞ ∞	
NO REMARKABLE FINDINGS	τC	9	55	2	4	7	4	7	2	5	2	2
EXTERNAL APPEARANCE - TAIL BENT - HAIRCOAT - WET MATTING	0 0	1 0	0	1 0	0	0 0	0 2	0 0	0	1 0		0 0
EYES - OPACI TY	1	0	0	0	0	0	0	0	0	0	0	0
HEART - APPARENT CONSTRICTION	0	0	0	0	0	0	0	0	1	0	0	0
KI DNEYS - DI LATED PELVI S - PI TTED	0 1	0	1 0	1 0	0	1 0	0 0	1 0	1 0	0 8	0 0	1 0
LUNGS -MOTTLED -NODULE(S) -DARK RED	1 0 0	000	1 0 0	0 1 0	0 8 0	000	0 0 1	000	0 0 1	000	0 0 0	1 0 0
MEDIASTINAL LYMPH NODE - REDDENED	0	0	0	0	0	0	н	0	0	0	0	0
SKI N - SCABBI NG	0	0	0	0	-	0	0	0	0	0	0	0

TABLE 24 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE SUMMARY OF FI GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASI A	GROUP: 1 2 3 4 5 6 1 2 3 4 5 6 1 20 30 50 75 1 20 30 50 75	UTHANASIA 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$0 1 1 2 1 0 \qquad 1 0 0 0 1 0$	1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 1
SLI STUDY NO.: 3472.3 A ONE-CLIENT: NIPERA, INC.			NUMBER OF ANIMALS IN DOSE GROUP NUMBER OF ANIMALS EXAMINED AT SCHEDULED EU	SPLEEN - GRAY AREA(S)	TRACHEA - CONTENT ABNORMAL	VAGI NA - CONTENT ABNORMAL

SLI Study No. 3472.3

APPENDIX A

A Preliminary Probe Study in Rats

I. INTRODUCTION

This report details the experimental procedures and results of a preliminary probe study in rats with nickel sulfate hexahydrate. This preliminary study was performed to select dosage levels for the one-generation range-finding reproduction study. The procedures for animal husbandry and methods of test article preparation were similar to those described for the range-finding study animals.

II. MATERIALS AND METHODS

The animals were acclimated to the laboratory conditions for five days prior to randomization (day -1). Animals were examined upon receipt and daily thereafter during acclimation for signs of physical or behavioral abnormalities. On the day following receipt, the rats were approximately 11 weeks of age with body weights ranging from 333 to 356 grams for males and 224 to 244 grams for females. Animals determined to be suitable test subjects were assigned to groups using a computer randomization program. The program ranked the animals according to day -1 body weights and randomly assigned the rats to study groups in a stratified block design. The study group design and dosage levels tested in the preliminary probe study were as follows:

Group	No. of	f Animals Female	Dosage Material	Dosage Level (mg/kg/day)	Dosage Conc. (mg/mL)	Dosage Volume (mL/kg)
1	2	2	RO-Di Water	0	0	10
2	2	2	Nickel Sulfate Hexahydrate	5.0	0.5	10
3	2	2	Nickel Sulfate Hexahydrate	15.0	1.5	10
4	2	2	Nickel Sulfate Hexahydrate	25.0	2.5	10
5	2	2	Nickel Sulfate Hexahydrate	50.0	5.0	10
6	2	2	Nickel Sulfate Hexahydrate	75.0	7.5	10
7	2	2	Nickel Sulfate Hexahydrate	150.0	15.0	10

Dosing preparations were administered orally, by gavage, as a single dose for 14 consecutive days. Individual doses were adjusted based on the most recent body weight. Mortality/general health checks were performed twice daily, in the morning and afternoon. Detailed clinical observations were performed prior to study initiation (day -1) and cage-side observations were performed daily between one-half hour and two hours following dosing (days 1 to 14). Individual body weights were recorded for each animal on days 1, 8 and 15. All animals were subjected to an abbreviated gross necropsy at the time of death or euthanasia. Surviving

animals were euthanized by carbon dioxide inhalation at study termination on day 15. The necropsy examination included evaluation of the external surfaces of the body and major tissues and organs in the thoracic, abdominal and pelvic cavities. No tissues were retained at necropsy.

III. RESULTS

One female in the 5.0 mg/kg/day group, one male in the 50.0 mg/kg/day group, one male in the 75.0 mg/kg/day group, and two females in the 150.0 mg/kg/day group died or were euthanized moribund during the study. The death at the 75.0 mg/kg/day level was clearly the result of a gavage accident. The death at the 5.0 mg/kg/day level was also suspected to be unrelated to the test article since no deaths occurred at the 15.0 and 25.0 mg/kg/day levels. In general, clinical signs were infrequent and randomly dispersed in the treated groups. Body weight gains appeared to be decreased in males at levels of 50.0 mg/kg/day and above, especially during the second week of treatment.

IV. CONCLUSION

Based on the above results, dosage levels of 10, 20, 30, 50 and 75 mg/kg/day were selected for the one-generation reproduction range-finding study in rats.

PAGE 1	3 4 5 6 0 25.0 50.0 75.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0/ 0 0/ 0 1/ 1 0 0/ 0 0/ 0 1/ 1	0 0/0 1/1 0/0	TING THE FINDING.
ICE/ANI MAL	3 15.0	0/2	/0	0 /0	TS EXHIBI
A PRELIMINARY PROBE STUDY IN RATS AND CLINICAL OBSERVATIONS (OCCURREN A L E	5. 0	0/0	0 /0	0 /0	MBER OF ANIMA
APPENDIX A RY PROBE STR OBSERVATION M A L E	1 0	0/0	0 /0	0 /0	VER THE NUM
APPENDIX A A PRELIMINARY PROBE STUDY IN RATS SUMMARY OF SURVIVAL AND CLINICAL OBSERVATIONS (OCCURRENCE/ANIMALS AFFECTED) M A L E	GROUP: LEVEL (MG/KG/DAY):			E(S)	NOTE: DATA REFLECT THE TOTAL OCCURRENCE OF EACH FINDING OVER THE NUMBER OF ANIMALS EXHIBITING THE FINDING
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		DEAD - FOUND DEAD - SCHEDULED EUTHANASIA	ACTI VI TY - ACTI VI TY - SALI VATI ON	EYES - DARK MATERIAL AROUND EYE(S)	NOTE: DATA REFLECT THE 1

APPENDIX A A PRELIMINARY PROBE STUDY IN RATS SUMMARY OF SURVIVAL AND CLINICAL OBSERVATIONS (OCCURRENCE/ANIMALS AFFECTED)	MALE	GROUP: 7 LEVEL (MG/KG/DAY): 150.0	0/ 0 2/ 2	1/ 1 1/ 1	0 /0 (S	NOTE: DATA REFLECT THE TOTAL OCCURRENCE OF EACH FINDING OVER THE NUMBER OF ANIMALS EXHIBITING THE FINDING.
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. SUMMARY OF SURVIVAL AND		GROUP: LEVEL (MG/	DEAD - FOUND DEAD - SCHEDULED EUTHANASIA	ACTIVITY - ACTIVITY DECREASED - SALIVATION	EYES - DARK MATERIAL AROUND EYE(S)	NOTE: DATA REFLECT THE TOTAL OCCURRENCE OF EACH F

SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.	APPENDIX A A PRELIMINARY PROBE STUDY IN RATS SUMMARY OF SURVIVAL AND CLINICAL OBSERVATIONS (OCCURRE	APPENDIX A Y PROBE STI OBSERVATIOI	IX A E STUDY ATI ONS	IN RA	(OCCURRENCE/ANIMALS AFFECTED)	I MALS	S AFFECT	ED)				PAGE	က	
	4	ЕМА	MALE	!										
	GROUP: LEVEL (MG/KG/DAY):	 	0	5.0	20	3 15.0		25. 0	4	50.0	5	75.	. 0	! !
DEAD - FOUND DEAD - UNSCHEDULED EUTHANASIA - SCHEDULED EUTHANASIA		0 / 2	008	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 /0	0 0 2	0 / 2	0 0 2	0/2	000	0/0/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	0 0 8	!
ACTI VI TY - ACTI VI TY DECREASED		0	0	\'0	0	0 /0	0	``	0	0	0	/0	0	
EXCRETA/EMESIS - SOFT STOOLS		0	0	\ 0	0	0 /0	0	1/	-1	0	0	/0	0	
BODY - UNKEMPT APPEARANCE		0	0	/0	0	0 /0		/0	0	0	0	/0	0	
EYES -LACRI MATI ON -EYELI D(S) - PARTI ALLY CLOSED	:LOSED	00	0 0	00	0 0	0/ 0/ 1/ 1/ 1/	0 1	ò ò	0 0	00	0 0	0	0 0	
OTHER - UNKNOWN AMOUNT OF TEST ARTICLE EXPELLE - APPARENT TEST ARTICLE SFEN COMING FROM	OTHER -UNKNOWN AMOUNT OF TEST ARTICLE EXPELLED FROM MOUTH -APPARRYT TEST ARTICLE SFEN COMING FROM ANIMAL'S NOSE	/0	0	1	1	0 /0	0	/0	0	/0	0	/0	0	
DURING DOSING		/0	0	/0	0	1/1		/0	0	0	0	/0	0	;

NOTE: DATA REFLECT THE TOTAL OCCURRENCE OF EACH FINDING OVER THE NUMBER OF ANIMALS EXHIBITING THE FINDING.

NOTE: DATA REFLECT THE TOTAL OCCURRENCE OF EACH FINDING OVER THE NUMBER OF ANIMALS EXHIBITING THE FINDING.

SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC.	A A PRELIMINARY SUMMARY OF SURVIVAL AND CLINICAL O	APPENDIX A A PRELIMINARY PROBE STUDY IN RATS SUMMARY OF SURVIVAL AND CLINICAL OBSERVATIONS (OCCURRENCE/ANIMALS AFFECTED)	4
	H.	F E M A L E	
	GROUP: LEVEL (MG/KG/DAY):	7 150.0	
DEAD - FOUND DEAD - UNSCHEDULED EUTHANASIA - SCHEDULED EUTHANASIA		2/ 2 0/ 0 0/ 0	1 1 1 1 1
ACTI VI TY - ACTI VI TY DECREASED		2/2	
EXCRETA/EMESIS - SOFT STOOLS		0 /0	
BODY - UNKEMPT APPEARANCE		1/ 1	
EYES -LACRI MATI ON -EYELI D(S) - PARTI ALLY CLOSED	LOSED	1/1 0	
OTHER - UNKNOWN AMOUNT OF TEST APPARENT TEST ARTICLE SI DURING DOSING	OTHER -UNKNOWN AMOUNT OF TEST ARTICLE EXPELLED FROM MOUTH -APPARENT TEST ARTICLE SEEN COMING FROM ANIMAL'S NOSE DURING DOSING	0 /0	

SLI STUDY CLIENT: NI	SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		A PRELIMINAR SUMMARY OF BO	APPENDIX A A PRELIMINARY PROBE STUDY IN RATS SUMMARY OF BODY WEIGHT DATA (GRAMS)	N RATS (GRAMS)			PAGE 1
			1 1 1	M A L E	-			
1 1 1 1 1 1 1 1	GROUP: LEVEL (MG/KG/DAY):	0	5.0	3 15.0	4 25.0	50.0	6 75. 0	150.0
DAY 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	MEAN	375	376	370	382	370	381	372
	Z	23	N	N	N	N	N	24
8								
	MEAN	403	402	402	422	401	389	397
	N	2	2	2	8	2	1	~
15								
	MEAN	426	416	418	448	401	372	397
	N	2	2	2	7	-	1	2

PAGE 2		7	242	23				
P/			 					
		6 75. 0	248	2	254	8	980	200
		5 50.0	251	23	254	8	957	. 01
IN RATS 1 (GRAMS)		4 25. 0	254	2	265	8	986	2001
APPENDIX A A PRELIMINARY PROBE STUDY IN RATS SUMMARY OF BODY WEIGHT DATA (GRAMS)	F E M A L E	3 15.0	246	2	246	2	949	્ર
A PRELIMIN SUMMARY OF		5.0	264	2	302	82	957	1
		0	249	2	264	82	986	2 22
Y NO.: 3472.3 NI PERA, INC.		GROUP: LEVEL (MG/KG/DAY):	1 MEAN	N	8 MEAN	N	15 MEAN	N
SLI STUDY NO.: CLIENT: NIPERA,			DAY					

NOTE: FEMALES IN GROUP 7 WERE FOUND DEAD ON OR BEFORE DAY 6.

PAGE 1		150.0	26	0 %
		75. 0	2. 1	-17
		5 50. 0	32	1
(IN RATS DATA (GRAMS)	1 1 1	25.0	40	26 2
APPENDIX A PRELIMINARY PROBE STUDY IN RATS SUMMARY OF BODY WEIGHT GAIN DATA (GRAMS)	MALE	3 15.0	33	16 2
A PRELIMIN SUMMARY OF BC	1	5.0	28	14 2
		0		23
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		GROUP: LEVEL (MG/KG/DAY):	DAY 1 TO 8 MEAN N	8 TO 15 MEAN N

•		1 1 1	! !		
PAGE 2		150.0			
		75.0	9	2	9 8
		50.0	8	2	೮ %
IN RATS ATA (GRAMS)	!	4 25. 0	12	2	- 0
APPENDIX A A PRELIMINARY PROBE STUDY IN RATS SUMMARY OF BODY WEIGHT GAIN DATA (GRAMS)	F E M A L E	3 15.0	-	2	4 2
A PRELIMIN SUMMARY OF BO	1 1 1 1	5.0	39	2	- 7
		0	15	7	e 2
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		GROUP: LEVEL (MG/KG/DAY):	DAY 1 TO 8 MEAN	Z	8 TO 15 MEAN N

NOTE: FEMALES IN GROUP 7 WERE FOUND DEAD ON OR BEFORE DAY 6.

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	S	A PRIUMMARY	ELIMIN. OF G	A PRELIMINARY PROBE SUMMARY OF GROSS NECROI	NDIX A OBE STU ECROPSY	STUDY IN RATS PSY OBSERVATI	APPENDIX A A PRELIMINARY PROBE STUDY IN RATS SUMMARY OF GROSS NECROPSY OBSERVATIONS						PAGE	ш 1	
		FOUNI	DEAD	OR EU	FOUND DEAD OR EUTHANIZED MORIBUND	ED MORI	BUND								
GROUP:	-	8	က	M A L	E	9	7	- -	~	3.	E M A		9	7	! !
LEVEL (MG/KG/DAY):	0	5.0	15.0	25.0	50.0		150.0	0	5.0	15.0	25.0	50.0	- 1	150.0	!
NUMBER OF ANIMALS IN DOSE GROUP NIMBER OF ANIMALS FOIND DEAD OR	8	2	8	8	2	8	8	2	8	8	2	8	8	2	
EUTHANIZED MORIBUND	0	0	0	0	1	-	0	0	1	0	0	0	0	8	
EXTERNAL APPEARANCE - HAI RCOAT - WET MATTING - HAI RCOAT - DARK MATERIAL	0 0	0 0	0 0	0 0	1 0	1 0	0	0 0	0 0	0	0 0	0 0	0 0		
ESOPHAGUS - PERFORATI ON	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
LARGE INTESTINE - CONTENT ABNORMAL	0	0	0	0	0	0	0	0	0	0	0	0	0	П	
LUNGS - DARK RED	0	0	0	0	П	0	0	0	0	0	0	0	0	0	
SMALL INTESTINE - CONTENT ABNORMAL	0	0	0	0	0	0	0	0	0	0	0	0	0	8	
STOMACH - CONTENT ABNORMAL	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
THORACI C CAVITY - FLUID CONTENTS	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
THYMUS - FOCI	0	0	0	0	П	0	0	0	0	0	0	0	0	0	
UTERINE HORNS -IMPLANTATION SITE(S) PRESENT	0	0	0	0	0	0	0	0	-	0	0	0	0	0	

PAGE 2		1 1 1 1 1 1 1 1 1	2 9	0 150.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 0	2 2 0
		Ξ,	2 3 4 5 6 7	50.0 75.	2 2	2	8
		FEMALE	4	25.0 5	2	8	8
		<u> </u>	3	15.0	2 2	8	8
			8	5.0		1	2 1
		 	-	0	2	8	7
A PRELIMINARY PROBE STUDY IN RATS SUMMARY OF GROSS NECROPSY OBSERVATIONS		1 1 1 1 1 1 1 1	2 3 4 5 6 7	150.0	2	23	8
UDY IN Y OBSE	NASIA		9	75.0	2	1	1
APPENDIX A A PRELIMINARY PROBE STUDY IN RATS JAMARY OF GROSS NECROPSY OBSERVATION	SCHEDULED EUTHANASIA	MALE	5	50.0		-	2 1 1 2
APPE IARY PR ROSS N	EDULED	MALE	4	25.0	8	8	83
EELIMIN YOF G	SCH		3	15.0		2	2
A PR SUMMAR			2	5.0	8	2	8
			-	0	2	7	7
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.			GROUP:	LEVEL (MG/KG/DAY):	NUMBER OF ANIMALS IN DOSE GROUP NIMBED OF ANIMALS EXAMINED AT	SCHEDULED EUTHANASIA	NO REMARKABLE FINDINGS

APPENDI X A	A PRELIMINARY PROBE STUDY IN RATS	INDIVIDUAL SURVIVAL AND CLINICAL OBSERVATIONS
	3472.3	INC.
	SLI STUDY NO.:	CLI ENT: NI PERA,

PAGE 1																														
A PRELIMINARY PROBE STUDY IN RATS INDIVIDUAL SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	STUDY DAY GRADE OBSERVATIONS	15 P SCHEDULED EUTHANASIA	P SCHEDULED 1	P SCHEDULED I	P SCHEDULED 1	_	P SCHEDULED	P SCHEDULED	15 P SCHEDULED EUTHANASI A	11 P FOUND DEAD	3 P DARK MATERIAL AROUND EYE(S)	15 P SCHEDULED EUTHANASIA	5 P FOUND DEAD	Д,	Д	15 P SCHEDULED EUTHANASI A	Д.	15 P SCHEDULED EUTHANASIA	Д	15 P SCHEDULED EUTHANASIA	P SCHEDULED	<u>а</u>	9 P UNSCHEDULED EUTHANASI A a	12 P UNKNOWN AMOUNT OF TEST ARTICLE EXPELLED FROM MOUTH	15 P SCHEDULED EUTHANASIA	7 P APPARENT TEST ARTICLE SEEN COMING FROM ANIMAL'S NOSE DIDENS DOSTING	d d	r eieliu(3)	15 P SCHEDULED EUTHANASIA
		CATEGORY	DEAD	DEAD	DEAD	DEAD	DEAD	DEAD	DEAD	DEAD	DEAD	EYES	DEAD	DEAD	ACTI VI TY	ACTI VI TY	DEAD	ACTI VI TY	DEAD	ACTI VI TY	DEAD	DEAD	DEAD	DEAD	OTHER	DEAD	OTHER	EVEC	EIES	DEAD
.: 3472.3 RA, INC.		GROUP	0 MG/KG/DAY	O MG/KG/DAY	5. 0 MG/KG/DAY	5. 0 MG/KG/DAY	15.0 MG/KG/DAY	15. 0 MG/KG/DAY	25.0 MG/KG/DAY	25. 0 MG/KG/DAY	50. 0 MG/KG/DAY	50.0 MG/KG/DAY		75.0 MG/KG/DAY	75.0 MG/KG/DAY			M 150.0 MG/KG/DAY		M 150. 0 MG/KG/DAY		O MG/KG/DAY	O MG/KG/DAY	5. 0 MG/KG/DAY	5.0 MG/KG/DAY		15.0 MG/KG/DAY			
I STUDY NO.: I ENT: NI PERA,		ANI MAL NO.	16980 M	16987 M		16989 M		16995 M	16981 M	16992 M	16984 M	16994 M		16982 M	16985 M			16983 M		16988 M		180 F	186 F	178 F			179 F			

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT a ON STUDY DAY 9, FEMALE #178 WAS FOUND TO HAVE DELIVERED PUPS IN ITS CAGE. THIS FEMALE WAS EUTHANIZED AND NECROPSIED. THE SURVIVING OFFSPRING WERE EUTHANIZED AND DISCARDED.

PAGE 2																
APPENDIX A A PRELIMINARY PROBE STUDY IN RATS INDIVIDUAL SURVIVAL AND CLINICAL OBSERVATIONS	(POSI TI VE FINDINGS)	GRADE OBSERVATIONS	P SCHEDULED EUTHANASIA	P SCHEDULED EUTHANASIA	P SOFT STOOLS	P SCHEDULED EUTHANASIA	P ACTIVITY DECREASED	P FOUND DEAD	P LACRI MATI ON	P ACTIVITY DECREASED	P UNKEMPT APPEARANCE	P FOUND DEAD				
A PRELIMINA IVIDUAL SURVIV	(P0	STUDY DAY	15	15	2	15	15	15	15	15	1	2	4	5	5	9
IND		CATEGORY	DEAD	DEAD	EXCRETA/EMESI S	DEAD	DEAD	DEAD	DEAD	DEAD	ACTI VI TY	DEAD	EYES	ACTI VI TY	BODY	DEAD
3472. 3 A, INC.		GROUP	15. 0 MG/KG/DAY	35. 0 MG/KG/DAY	35. 0 MG/KG/DAY		50. 0 MG/KG/DAY	50. 0 MG/KG/DAY	75. 0 MG/KG/DAY	75. 0 MG/KG/DAY	150. 0 MG/KG/DAY		F 150. 0 MG/KG/DAY			
SLI STUDY NO.: CLI ENT: NI PERA,		ANIMAL NO.	191 F 1	ഥ	ഥ		Ţ	Ţ	182 F 7	ഥ	H		184 F 15			

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

CLI ENT: NI PERA,	Î			
DAY	1	8	15	
GROUP 1: 0 MG/KG/DAY	MG/KG/DAY			
16980 M 16987 M	381 368	408 397	431 420	
MEAN N	375 2	403	426 2	
GROUP 2: 5.0	5.0 MG/KG/DAY	ζ.		
16986 M 16989 M	381 370	405 398	423 408	
MEAN N	376 2	402	416 2	
GROUP 3: 15.	15.0 MG/KG/DAY	17		
16991 M 16995 M	374 365	404	424 411	
MEAN N	370 2	402	418 2	
GROUP 4: 25.	25.0 MG/KG/DAY	IX.		
16981 M 16992 M	372 391	403 440	416 479	
MEAN	382	422	448 2	

DAY	1		15	
GROUP 5: 50.	50. 0 MG/KG/DAY			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16984 M 16994 M	366 373	405 397	FOUND DEAD 40.1	
MEAN N	370 2	401 2	$\begin{array}{c} 401 \\ 1 \end{array}$	
GROUP 6: 75.0 MG/KG/DAY	O MG/KG/DAY			
16982 M 16985 M	378 384	FOUND DEAD 389	372	
MEAN N	$\frac{381}{2}$	389 1	372 1	
GROUP 7: 150.0 MG/KG/DAY). O MG/KG/DA	Y		
16983 M 16988 M	372 371	409 385	$\frac{410}{384}$	
MEAN N	372 2	397 2	397 2	

CLI ENT: NI PERA,	RA, INC.		INDIVIDUAL BODY WEIGHT DATA (GRAMS)	
DAY	1	· · · · · · · · · · · · · · · · · · ·	15	
GROUP 1: 0 MG/KG/DAY	MG/KG/DAY			
180 F 186 F	255 243	268 259	262 270	
MEAN N	249 2	264 2	266 2	
GROUP 2: 5.	5.0 MG/KG/DAY			
178 F 190 F	276 251	340 264	UNSCHEDULED EUTHANASIA 257	
MEAN N	264 2	302 2	257 1	
GROUP 3: 15.	15.0 MG/KG/DAY			
179 F 191 F	245 247	251 240	246 252	
MEAN N	246 2	246 2	249 2	
GROUP 4: 25.	25.0 MG/KG/DAY			
176 F 183 F	242 265	254 276	252 280	
MEAN N	254 2	265	266 2	

SLI STUDY NO : 3472.3 CLI ENT: NI PERA, INC. DAY GROUP 5: 50.0 MG/KG/DAY 185 F 250 MEAN 251 N GROUP 6: 75.0 MG/KG/DAY 182 F 259 MEAN 182 F 259 MEAN 248 MEAN 248 N 184 F 247 184 F 237
--

CLI ENT: NI PERA,	,		
DAY	1 T0 8	8 TO 15	
GROUP 1: 0 MG/KG/DAY	MG/KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1
16980 M 16987 M	27 29	23 23	
MEAN N	28	23	
GROUP 2: 5.0	5.0 MG/KG/DAY		
16986 M 16989 M	24 28	18 10	
MEAN N	26 2	14	
GROUP 3: 15.	15.0 MG/KG/DAY	λ	
16991 M 16995 M	30 35	20 11	
MEAN N	33	16 2	
GROUP 4: 25.	25.0 MG/KG/DAY	>-	
16981 M 16992 M	31 49	13 39	
MEAN	40	26	

S PAGE 2										
APPENDIX A A PRELIMINARY PROBE STUDY IN RATS INDIVIDUAL BODY WEIGHT GAIN DATA (GRAMS)			DEAD							
	8 TO 15		FOUND DEAD	1	X.	EAD - 17	- 17	AY	1 -	0 8
: 3472.3 A, INC.	1 TO 8	50.0 MG/KG/DAY	39 24	32 2	75. 0 MG/KG/DAY	FOUND DEAD 5	5 1	.OMG/KG/D	37 14	26
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	DAY	GROUP 5: 50.	16984 M 16994 M	MEAN N	GROUP 6: 75.	16982 M 16985 M	MEAN N	GROUP 7: 150.0 MG/KG/DAY	16983 M 16988 M	MEAN N

CLI ENT: NI PERA,	RA, INC.	A FRELLMINARI FRODE SIGDI IN RAIS INDIVIDUAL BODY WEIGHT GAIN DATA (GRAMS)	PAGE 3
DAY	1 TO 8	8 TO 15	
GROUP 1: 0 N	O MG/KG/DAY		
180 F 186 F	13 16	-6 11	
MEAN N	15 2	9 00	
GROUP 2: 5.0	5.0 MG/KG/DAY		
178 F 190 F	64 13	UNSCHEDULED EUTHANASIA -7	
MEAN N	39 2	- 7 1	
GROUP 3: 15.	15.0 MG/KG/DAY		
179 F 191 F	9 - 7	- 5 12	
MEAN N	- 1	4.2	
GROUP 4: 25.	25.0 MG/KG/DAY		
176 F 183 F	12 11	- 2 4	
MEAN N	12 2	2 2 2	

SLI STUDY NO.: CLIENT: NIPERA,	3472. 3 . INC.	APPENDIX A A PRELIMINARY PROBE STUDY IN RATS INDIVIDUAL BODY WEIGHT GAIN DATA (GRAMS)	PAGE	4
DAY 1	1 T0 8 8	8 T0 15		! ! !
GROUP 5: 50.0 MG/KG/DAY	MG/KG/DAY			
185 F 189 F	5	7 -1		
MEAN N	೯ ೩	2 3		
GROUP 6: 75.0 MG/KG/DAY	MG/KG/DAY			
182 F 187 F	10 2	9 2		
MEAN N	9 8	2 6		
GROUP 7: 150.0 MG/KG/DAY) MG/KG/DAY	>		
181 F 184 F	FOUND DEAD FOUND DEAD	0		1

SLI STUDY NO.: 3 CLIENT: NIPERA, I	3472. 3 INC.	A PREI I NDI VI D	APPENDIX A A PRELIMINARY PROBE STUDY IN RATS INDIVIDUAL GROSS NECROPSY OBSERVATIONS	PAGE 1
		FOUND	FOUND DEAD OR EUTHANIZED MORIBUND	GRADE
ANI MAL NO. 16984	GROUP:	50. 0 MG/KG/DAY MALE LUNGS THYMUS	TUDY DAY 11	d d
		EXT. APPEARANCE	GROSS: HAIRCOAT - WET MATTING AROUND NOSE AND MOUTH, TAN	ď
ANI MAL NO. 16982	GROUP:	75.0 MG/KG/DAY MALE ESOPHAGUS	FOUND DEAD 7/18/98 STUDY DAY 5 GROSS: PERFORATION ANTERIOR TO THYMUS	Ъ
		EXT. APPEARANCE THORACI C CAVITY	GROSS: HAIRCOAT - WET MATTING AROUND NOSE AND MOUTH; LIGHT YELLOW GROSS: FLUID CONTENTS APPROXIMATELY 1. 5 ML; CLEAR DARK RED	<u>а</u> а
ANI MAL NO. 178	GROUP:	5. 0 MG/KG/DAY FEMALE UTERINE HORNS	EUTHANIZED MORIBUND 7/22/98 STUDY DAY 9 GROSS: IMPLANTATION SITE(S) - (LEFT, RIGHT) 2, 4	ď
ANI MAL NO. 181		GROUP: 150.0 MG/KG/DAY FEMALE SMALL INTESTINE	FOUND DEAD 7/15/98 STUDY DAY 2 GROSS: CONTENT ABNORMAL PORTI ONS OF JEJUNUM; RED MUCOLD	А
ANI MAL NO. 184		GROUP: 150.0 MG/KG/DAY FEMALE SMALL INTESTINE	FOUND DEAD 7/19/98 STUDY DAY 6 GROSS: CONTENT ABNORMAL ENTERD TRACET, DARK DEDNI SH CREEN MICKEDIAL	Q.
		LARGE INTESTINE	GROSS: CONTENT ABNORMAL FORD SH-GREEN MICOLD MATERIAL FRUIT FF TRACT: DARK REDDI SH-GREEN MICOLD MATERIAL	Ь
		STOMACH	GROSS: CONTENT ABNORMAL DARK CRFFNI SH. FROMN FILLID	Ы
		EXT. APPEARANCE	GROSS: HAIRCOAT - WETTING UROGENITAL AREA: DARK GREEN	e,

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

	PAGE 2		GRADE	d
APPENDIX A	A PRELIMINARY PROBE STUDY IN RATS	INDIVIDUAL GROSS NECROPSY OBSERVATIONS	FOUND DEAD OR EUTHANIZED MORIBUND	EXT. APPEARANCE GROSS: HAIRCOAT - DARK MATERIAL AROUND EYES, NOSE, MOUTH AND FORELIMBS; RED
	SLI STUDY NO.: 3472.3	CLI ENT: NI PERA, INC.		ANI MAL NO. 184 (CONTINUED)

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

PAGE 3	GRADE											
		15	15	15	15	15	15	15	15	15	15	15
APPENDIX A A PRELIMINARY PROBE STUDY IN RATS INDIVIDUAL GROSS NECROPSY OBSERVATIONS		EUTHANASIA 7/28/98 STUDY DAY SI GNIFI CANT CHANGES OBSERVED	EUTHANASIA 7/28/98 STUDY DAY SI GNI FI CANT CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	EUTHANASIA 7/28/98 STUDY DAY SI GNI FI CANT CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	EUTHANASIA 7/28/98 STUDY DAY SI GNI FI CANT CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED
	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT	SCHEDULED EUTHANASIA GROSS: NO SI GNI FI CANT	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT	SCHEDULED EUTHANASIA GROSS: NO SI GNI FI CANT	SCHEDULED EUTHANASIA GROSS: NO SI GNI FI CANT	SCHEDULED EUTHANASIA GROSS: NO SI GNI FI CANT	SCHEDULED EUTHANASIA GROSS: NO SI GNI FI CANT	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT
		MALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE
		0 MG/KG/DAY	O MG/KG/DAY	5.0 MG/KG/DAY	5.0 MG/KG/DAY	15. 0 MG/KG/DAY	15. 0 MG/KG/DAY	25. 0 MG/KG/DAY	25. 0 MG/KG/DAY	50. 0 MG/KG/DAY	75. 0 MG/KG/DAY	GROUP: 150.0 MG/KG/DAY
10.: 3472.3 PERA, INC.		GROUP:	GROUP:	16986 GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:
		16980	16987	16986	16989	16991	16995	16981	16992	16994	16985	16983
SLI STUDY NO.: CLIENT: NI PERA,		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

PAGE 4	GRADE											
		. 15	, 15	, 15	, 15	, 15	, 15	, 15	, 15	, 15	, 15	. 15
APPENDIX A A PRELIMINARY PROBE STUDY IN RATS INDIVIDUAL GROSS NECROPSY OBSERVATIONS		7/28/98 STUDY DAY	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED	7/28/98 STUDY DAY CHANGES OBSERVED
	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT			
	•	MALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE
		16988 GROUP: 150.0 MG/KG/DAY	O MG/KG/DAY	O MG/KG/DAY	5.0 MG/KG/DAY	15. 0 MG/KG/DAY	15. 0 MG/KG/DAY	25. 0 MG/KG/DAY	25. 0 MG/KG/DAY	50. 0 MG/KG/DAY	50. 0 MG/KG/DAY	75. 0 MG/KG/DAY
0.: 3472.3 ERA, INC.		GROUP:	180 GROUP:	186 GROUP:	190 GROUP:	179 GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:
		16988	180	186	190	179	191	176	183	185	189	182
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.				

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

	PAGE 5		GRADE	
APPENDIX A	A PRELIMINARY PROBE STUDY IN RATS	INDIVIDUAL GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	FEMALE SCHEDULED EUTHANASIA 7/28/98 STUDY DAY 15 GROSS: NO SIGNIFICANT CHANGES OBSERVED
				75. 0 MG/KG/DAY
	3472.3	NC.		187 GROUP:
	NO.: 3	PERA, I.		187
	SLI STUDY	CLI ENT: NI PERA,		ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

APPENDIX B

Protocol, Protocol Amendments and Protocol Deviations/Occurrences

A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE

PROTOCOL

Springborn Study No. 3472.3

Springborn Laboratories, Inc. (SLI)
Ohio Research Center
640 N. Elizabeth Street
Spencerville, OH 45887

Joseph C. Siglin, Ph.D., DABT Study Director

For

NiPERA, Inc. 2605 Meridian Parkway Suite 200 Durham, NC 27713

PURPOSE	1
RESPONSIBILITIES	1
Sponsor	1
Sponsor's Representative	1
Testing Location	1
Personnel Responsibilities	2
PROPOSED STUDY SCHEDULE	2
TEST ARTICLE AND CONTROL MATERIAL	2
Test Article Identification SLI Test Article Identification Number Batch (Lot) Number Source Purity Description Shelf Life/Expiration Date Characteristics Storage Conditions Handling Precautions	2 3 3 3 3 3 3 3
Retention Sample	4
Test Article Disposition	4
Vehicle Control Material	
Method and Frequency of Test Article Preparation	4

TEST SYSTEM	5
Justification of the Test System	5
Justification of the Route of Exposure and Number of Animals	5
Description Species Strain Source Age and Body Weight Number of Animals/Sex on Study	6666
Method of Identification	6
Animal Husbandry Housing Environment Food Water	7 7 7
Acclimation	8
Randomization	8
EXPERIMENTAL DESIGN AND PROCEDURES	9
Study Group Design	9
Treatment	9
Parameters to be Evaluated	0 0 0 1
BreedingF0 Animals	1

Parturition-F0 Females	11
LactationF0 Females Method of Individual Pup Identification F1 Offspring Standardization of Litter Sizes	12 12
Selection of F1 Animals	12
Nonselected F1 Pups	13
Gross Necropsy Unscheduled DeathsF0 and Selected F1 Animals Scheduled EuthanasiaF0 and Selected F1 Animals Unscheduled DeathsNonselected F1 Pups	14 14
PROTOCOL AMENDMENT	14
DATA REPORTING	15
STATISTICAL ANALYSIS	16
MAINTENANCE OF RAW DATA, RECORDS AND SPECIMENS	16
REGULATORY COMPLIANCE	17
QUALITY ASSURANCE	17
ANIMAL WELFARE COMPLIANCE STATEMENT	17
DECLARATION OF INTENT	18
PROTOCOL APPROVAL	19
REFERENCES	20

ATTACHMENT 1		21
A Preliminary Probe Study in Rats	2	21

I. PURPOSE

The purpose of this range-finding study is to evaluate the potential effects of the test article when administered to rats by oral gavage over the course of one generation. Data from this study will be used to select dosage levels for a subsequent two-generation reproduction study in rats. This study will be conducted in accordance with the Principles of Good Laboratory Practice set forth by the OECD [C(97)186/FINAL].

II. RESPONSIBILITIES

A. Sponsor

Nickel Producers Environmental Research Association, Inc. (NiPERA, Inc.) 2605 Meridian Parkway Suite 200 Durham, NC 27713

B. Sponsor's Representative

Hudson K. Bates, Ph.D., DABT Senior Health Scientist

Telephone: (919) 544-7722

Fax:

(919) 544-7507

e-mail:

hbates@nipera.org

C. Testing Location

Springborn Laboratories, Inc. Ohio Research Center 640 N. Elizabeth Street Spencerville, Ohio 45887 Telephone: (419) 647-4196

Fax:

(419) 647-6560

D. Personnel Responsibilities

- Joseph C. Siglin, Ph.D., DABT Study Director/Director of Toxicology
- Bjorn A. Thorsrud, Ph.D.
 Alternate Contact/Manager of Developmental and Reproduction Toxicology
- Malcolm Blair, Ph.D.
 Vice President and Managing Director
- 4. Robert C. Springborn, Ph.D. Chairman, President and CEO
- 5. J. Dale Thurman, D.V.M., M.S., DABT Director of Pathology
- 6. Anita M. Bosau, RQAP-GLP Director of Compliance Assurance

III. PROPOSED STUDY SCHEDULE

- A. Initiation of In-Life Phase: July, 1998
- B. Completion of In-Life Phase: October, 1998
- C. Audited Draft Report Date: January, 1999

IV. TEST ARTICLE AND CONTROL MATERIAL

A. Test Article

1. Identification

Nickel(II) sulfate hexahydrate (CAS No. 10101-97-0)

2. SLI Test Article Identification Number

S98.001.3472

3. Batch (Lot) Number

08516TQ

4. Source

Aldrich Chemical Company

5. Purity

99%

6. Description

Blue green crystalline powder

7. Shelf Life/Expiration Date

None provided

8. Characteristics

The Sponsor is responsible for any necessary evaluations of the test article concerning chemical identity, purity, strength, stability, and other required data.

9. Storage Conditions

Ambient temperature; tightly closed container

10. Handling Precautions

Safety data regarding the test article will be provided [Material Safety Data Sheet (MSDS) or equivalent, if available]. Technical personnel are required to read this information prior to handling the test article. Any questions concerning this information should be referred to the Study Director.

Additional safety and handling information may be provided by the Study Director and/or Sponsor. Minimum safety requirements include safety glasses, impervious gloves, and laboratory attire. Material Safety Data Sheets (or equivalent) shall also be available for all other chemical entities utilized in the conduct of this study.

B. Retention Sample

A retention sample (1 g) of each lot of the test article will be taken and stored at SLI under the specified storage conditions.

C. Test Article Disposition

The test article will be properly disposed of following completion of all scheduled studies.

D. Vehicle Control Material

1. Identity

Reverse Osmosis-Deionized (RO-Di) Water (from SLI Pharmacy source)

E. Method and Frequency of Test Article Preparation

The test article will be dissolved in RO-Di water for administration by daily oral gavage. Gavage solutions will be prepared fresh at least every 21 days and stored refrigerated (approximately 2-8°C) until use. All procedures used in preparing the gavage solutions will be recorded and reported.

At the first preparation of dosing solutions for the range-finding study, duplicate 20 mL samples of each gavage solution, including the vehicle control, will be taken and stored at -70°C for possible analytical analysis. These samples will be discarded after conclusion of the study if analytical analysis is not considered necessary by the Sponsor and Study Director.

V. TEST SYSTEM

A. Justification of the Test System

The Sprague-Dawley rat was selected as the animal model for this study since:

- 1. This species/strain has a proven sensitivity to a variety of agents and therefore provides a suitable animal model for testing chemicals and drugs for human risk assessment.
- 2. Both the EPA and OECD recommend the rat for reproduction studies.
- Reliable scientific methods currently exist for performing rat reproduction studies. In addition, extensive historical control data are available at SLI and in the published literature concerning fertility and general reproduction in the rat.
- 4. The Sprague-Dawley rat has been used extensively for reproduction testing. Thus, data from this study may be compared and contrasted to other studies performed in rats.
- 5. Healthy rats may be obtained from USDA approved and regulated suppliers.
- 6. Laboratory rats may be safely handled and manipulated by trained laboratory personnel.

B. Justification of the Route of Exposure and Number of Animals

- Oral administration of the test article was selected since this is a potential route of human exposure. In addition, this route is recommended by EPA and OECD Guidelines for reproduction studies.
- 2. This study was designed to use the fewest number of animals possible, consistent with the objectives of the study, the scientific needs of the Sponsor, contemporary scientific standards and in consideration of applicable regulatory requirements.

C. Description

1. Species

Rat

2. Strain

Sprague-Dawley Crl:CD®BR VAF/Plus®

3. Source

Charles River Laboratories, Inc. St. Constant, Quebec Canada

4. Age and Body Weight (at Receipt)

Approximately 10 to 11 weeks old and at least 200 g (males) or 175 g (females). Actual body weights will be documented in the study records.

5. Number of Animals/Sex on Study

48 males and 48 females (range-finding study) 14 males and 14 females (preliminary probe)

A minimum of 70 rats per sex will be obtained. The females will be nulliparous and nonpregnant at receipt. Males and females will have different birth dates to avoid potential sibling pairings.

D. Method of Identification

Metal ear tags displaying unique identification numbers will be used as the method of identification. Color coded cage cards displaying the study number, animal number and group number will be affixed to each cage.

E. Animal Husbandry

1. Housing

The animals will be housed individually in suspended stainless steel cages (except during cohabitation for mating) or plastic nesting boxes (F0 females) for parturition and lactation. All housing and care will be based on the standards recommended by the Guide for the Care and Use of Laboratory Animals [1].

2. Environment

The environmental controls for the animal room will be set to maintain room temperature and relative humidity ranges of $72 \pm 7^{\circ}$ F and $50 \pm 20^{\circ}$, respectively. Environmental control equipment will be monitored and adjusted as necessary to minimize fluctuations in the animal room environment. Light timers will be set to maintain a 12-hour light/12-hour dark cycle and the room ventilation will be set to produce 10-15 air changes/hour. The room temperature and relative humidity will be recorded a minimum of once daily.

3. Food

PMI Certified Rodent Chow® #5002 (Purina Mills, Inc.) will be provided ad libitum throughout the study. The feed is analyzed by the supplier for nutritional components and environmental contaminants. The lot number and expiration date of each batch of diet used during the study will be recorded. Dietary limitations for various environmental contaminants, including heavy metals, pesticides, polychlorinated biphenyls and total aflatoxin are set by the manufacturer. Within these limits, there are no contaminants reasonably expected in the diet which would interfere with the conduct of this study. Results of the dietary analyses (Certificates of Analysis) are provided by the manufacturer for each lot of diet. These will be maintained by the testing laboratory.

4. Water

Municipal tap water following treatment by reverse osmosis will be available ad libitum throughout the study. The purified water will be supplied by an automatic watering system or in water bottles for measurement of water consumption. Monitoring of the drinking water for contaminants will be conducted by the testing laboratory and the records will be available for inspection. Levels of contaminants which may be present are not expected to compromise the purpose of the study.

F. Acclimation

Upon receipt, 10-11 week old Charles River CD VAF/Plus® rats will be removed randomly from the shipping cartons, housed individually and eartagged. The animals will be weighed on the day after receipt and allowed to acclimate for a minimum of 10 days. During the acclimation period, the rats will be observed on a daily basis for overt physical and behavioral abnormalities. General health/mortality and moribundity checks will be performed twice daily, in the morning and afternoon, throughout the acclimation period. Any animals exhibiting abnormal signs will not be used on the study.

G. Randomization

On study day -1, the animals will be weighed and examined in detail for signs of physical disorder (detailed clinical observations). Animals determined to be suitable as test subjects will be assigned randomly to groups. The animal numbers and the respective body weight values will be entered into the computer. Homogeneity of groups by weight will be the criterion for acceptance of the randomization. Disposition of animals not selected for study will be documented in the study records. At the commencement of the study, the weight variation of the animals used will not exceed \pm 20% of the mean weight for that sex.

VI. EXPERIMENTAL DESIGN AND PROCEDURES

A. Study Group Design

The experimental design for the range-finding study is as follows:

	No. of Parental Animals			Dosage	Dosage	Dosage
Group	Male	Female	Dosage Material ^a	Level (mg/kg/day)⁵	Dosage Conc. (mg/mL)	Dosage Volume (mL/kg)
1	8	8	Vehicle	0	0	TBD
2	8	8	NSH	TBD	TBD	TBD
3	8	8	NSH	TBD	TBD	TBD
4	8	8	NSH	TBD	TBD	TBD
5	8	8	NSH	TBD	TBD	TBD
6	8	8	NSH	TBD	TBD	TBD

^aVehicle = RO-Di water; NSH = Nickel sulfate hexahydrate (in aqueous solution).

B. Treatment

Oral (gavage) administration. The test article and vehicle will be administered once daily, by oral gavage, to F0 parents and selected F1 offspring. The gavage needle will be wiped with gauze just prior to each dose administration. All attempts will be made to complete dosing by 10:00 a.m. on each day. Individual doses will be based on the most recent body weights. Study animals will receive continuous exposure to the control or test article throughout the study, at the appropriate levels, up to and including the day prior to scheduled euthanasia. F0 parental animals will be treated daily, beginning two weeks (14 days) prior to mating. Dosing of F1 offspring will begin on postnatal day (PND) 22 and will continue for 1, 2 or 3 weeks, depending on findings.

^bDosage levels for the range-finding study will be selected based upon results of a preliminary probe study (see Attachment 1).

TBD = To Be Determined.

C. Parameters to be Evaluated

1. Clinical Signs-F0 Animals

F0 male and female animals will be checked for mortality/general health and moribundity twice daily during the study, in the morning and afternoon. Detailed clinical observations will be performed once weekly. In addition, cage-side observations for overt signs of toxicity will be performed a minimum of once daily, within approximately one-half to two hours following dosing. During gestation and lactation, F0 females will receive detailed clinical observations on a daily basis. All F0 animals will receive a detailed clinical observation on the day of scheduled euthanasia.

2. Clinical Signs--Selected F1 Animals

Beginning on PND 22, selected F1 animals will be checked daily for mortality/general health and moribundity twice daily, in the morning and afternoon. Detailed clinical observations will be performed a minimum of once weekly. In addition, cage-side observations for overt signs of toxicity will be performed a minimum of once daily, within approximately one-half to two hours following dosing. All selected F1 animals will receive a detailed clinical observation on the day of scheduled euthanasia.

3. Body Weights--F0 Animals

- a. Males-recorded once per week and on the day of scheduled euthanasia.
- b. Females—recorded once per week prior to confirmation of copulation. Females with positive evidence of mating and females that deliver will be weighed as follows:

Gestation--days 0, 7, 14 and 21. Lactation--days 1, 4, 7, 10, 14 and 21.

Females with no evidence of copulation will be weighed weekly and on the day of scheduled euthanasia.

4. Body Weights--Selected F1 Animals

Beginning on PND 22, body weights will be recorded on a weekly basis for all selected F1 animals until termination. A final body weight will be recorded for each animal on the day of scheduled euthanasia.

5. Food and Water Consumption--F0 Animals

- a. Males—recorded on a weekly basis, except during cohabitation, until the start of scheduled euthanasia for males.
- b. Females—recorded on a weekly basis (except during cohabitation), on gestation days 0, 7, 14, and 21; and on lactation days 1, 4, 7 and 10.

For females with no evidence of copulation, food and water bottle weights will be recorded on a weekly basis.

D. Breeding-F0 Animals

After 14 days of treatment, each F0 female will be cohabitated with a single randomly selected F0 male from the same treatment group (1:1 pairings). The female will be placed in the male's cage. Each mating pair will be observed for evidence of copulation once daily during cohabitation. Detection of a vaginal copulatory plug or the presence of sperm in a vaginal smear will be the methods used to confirm copulation. The day on which confirmation of mating is made will be designated as day 0 of gestation, and will result in separation of the mating pair. The female will be returned to her individual cage. If after 14 days of mating no evidence of copulation is observed, the female will be separated from the male and placed in a plastic cage containing nesting material.

E. Parturition-F0 Females

Females with confirmed copulation will be transferred to plastic cages containing nesting material on gestation day 18 and observed at least twice daily for signs of parturition. Females with no evidence of mating will be examined for signs of parturition beginning 19 days following initiation of cohabitation. When parturition is first detected, the time will be recorded. The day when parturition is judged complete will be designated lactation day 0. Any signs of difficult or prolonged parturition will be recorded.

F. Lactation-F0 Females

The lactation period will extend from days 0 to 21 during which time the dam and litter will remain together. Any abnormal nursing or nesting behaviors will be noted.

1. Method of Individual Pup Identification

Tail tattooing will be used to individually identify each pup in the litter. On lactation day 0, pups in each litter will be consecutively numbered beginning with the male offspring.

2. F1 Offspring

The following parameters will be evaluated for each pup during lactation:

- a. Viability: daily from days 0 to 21.
- b. External Examinations: days 0, 4, 7, 14 and 21.
- c. Sex Determinations: days 0, 4, 7, 14 and 21.
- d. Body Weights: days 1, 4, 7, 14 and 21.

3. Standardization of Litter Sizes

On lactation day 4, the size of each litter will be adjusted by random selection of pups to yield, as nearly as possible, 4 males and 4 females per litter. Whenever the number of male and female pups prevents having 4 of each sex per litter, partial adjustment will be undertaken. No adjustments will be made for litters of 8 pups or less.

G. Selection of F1 Animals

At least 1 pup per sex per litter will be randomly selected (when possible) for oral dosing which will begin for selected F1 rats on PND 22 and continue for 1 to 3 weeks. The selection procedure will be performed when the pups are between postpartum days 4 and 21. Prior to the selection process, each pup will be externally examined and the sex verified. Only animals of suitable health will be acceptable for selection. A total of 8 male and 8 female F1 pups per group will be randomly selected. Following selection, F1 pups will

be individually ear tagged and then gang housed (2 or 3 per cage) in stainless steel caging for approximately 3 days to allow the animals to adapt to the automatic watering system.

H. Nonselected F1 Pups

Following weaning, all surviving nonselected F1 pups will be euthanized by carbon dioxide inhalation and discarded without necropsy.

I. Gross Necropsy

1. Unscheduled Deaths-F0 and Selected F1 Animals

All F0 and selected F1 animals found dead or euthanized moribund during the study will be subjected to an abbreviated gross necropsy examination which will include examination of the external surfaces of the body and major tissues and organs in the thoracic, abdominal and pelvic cavities. For F0 females found dead or euthanized following mating, uterine contents will be examined and the number of implantation sites and number of corpora lutea on each ovary will be recorded. Uteri of F0 females with no macroscopic implantations will be opened and placed in 10% aqueous ammonium sulfide solution as described by Salewski [2]. If present, uterine implantation scars will be counted and recorded. Moribund animals will be euthanized by carbon dioxide inhalation. Any animal found dead after working hours will be refrigerated until the next scheduled work day. No tissues will be saved.

2. Scheduled Euthanasia-F0 and Selected F1 Animals

Parental female animals will be euthanized and necropsied according to the following schedule:

- Females that Deliver: on lactation day 21
- b. Females with Total Litter Loss: at the time of discovered total litter loss
- c. Females that Fail to Deliver (with evidence of mating): 25 days after evidence of mating is detected.

d. Females that Fail to Deliver (with no evidence of mating): 25 days after completion of the breeding period.

Surviving F0 and selected F1 animals will be euthanized by carbon dioxide inhalation and subjected to an abbreviated gross necropsy examination which will include examination of the external surfaces of the body and major tissues and organs in the thoracic, abdominal and pelvic cavities. Uterine contents of F0 females will be examined and the number of implantation scars will be recorded. Uteri of F0 females with no macroscopic implantations will be opened and placed in 10% aqueous ammonium sulfide solution as described by Salewski [2]. If present, uterine implantation scars will be counted and recorded. No tissues will be saved.

If all the pups in a litter die prior to lactation day 21, the dam will be euthanized and necropsied as described above, and the number of uterine implantation scars will be recorded.

In general, F0 males will be euthanized following completion of female parturition, and F0 females will be euthanized following completion of weaning. Selected F1 animals will be euthanized following termination of the F1 dosing phase.

3. Unscheduled Deaths--Nonselected F1 Pups

All nonselected F1 pups found dead or euthanized moribund will be submitted to necropsy for a gross examination, with emphasis on developmental morphology. Pups with deformities which are expected to affect survival, or pups partially cannibalized but viable will be euthanized by carbon dioxide inhalation and necropsied similar to dead pups. Partially cannibalized nonviable pups will be examined externally and discarded if they appear normal, or submitted to necropsy for further examination if they appear abnormal. No tissues will be saved.

VII. PROTOCOL AMENDMENT

Alterations to this protocol may be made as the study progresses. No changes in the protocol will be made without the specific consent of the Sponsor's Representative. A protocol amendment will be prepared and signed by the Study Director, SLI Quality Assurance and Sponsor's Representative for any such changes.

VIII. DATA REPORTING

One copy of the draft report and two copies of the final report (one bound and one unbound) will be submitted to the Sponsor. The final report will include all information necessary to provide a complete and accurate description of the experimental procedures and results.

The report will include at least the following information, tables and appendices:

- Table of Contents
- Regulatory Compliance
- Summary
- Introduction and Objectives
- Experimental Design and Test Procedures
- Presentation and Discussion of Results
- Conclusion
- References

Tables:

- Summary of F0 Survival and Incidence of Clinical Signs
- Summary of F0 Body Weights and Body Weight Changes
- Summary of F0 Food and Water Consumption (g/animal/day)
- Summary of F0 Gestation and Lactation Body Weights and Body Weight Changes
- Summary of F0 Gestation Food and Water Consumption (g/animal/day)
- Summary of F0 Lactation Food and Water Consumption (g/animal/day)
- Summary of F0 Fertility Indices and Gestation Lengths
- Summary of F1 Litter Data (Survival, Size and Sex Ratios)
- Summary of F1 Litter Weights
- Summary of F1 Pup Observations
- Summary of Selected F1 Survival and Incidence of Clinical Signs
- Summary of Selected F1 Body Weights and Body Weight Changes
- Summary of F0 Gross Necropsy Findings
- Summary of F0 Implantation Data and Post-Implantation Loss
- Summary of Selected F1 Gross Necropsy Findings

Appendices:

- Individual F0 Survival and Incidence of Clinical Signs
- Individual F0 Body Weights and Body Weight Changes
- Individual F0 Food and Water Consumption (g/animal/day)

- Individual F0 Gestation and Lactation Body Weights and Body Weight Changes
- Individual F0 Gestation Food and Water Consumption (g/animal/day)
- Individual F0 Lactation Food and Water Consumption (g/animal/day)
- Individual F0 Fertility Indices and Gestation Lengths.
- Individual F1 Litter Data (Survival)
- Individual F1 Litter Weights
- Individual F0 Gross Necropsy Findings
- Individual F0 Implantation Data and Post-Implantation Loss
- Individual Selected F1 Gross Necropsy Findings
- Protocol and any Amendments
- Historical Control Data (if applicable)
- SLI Personnel Responsibilities

IX. STATISTICAL ANALYSIS

Statistical analyses will be performed using a Digital MicroVax 3100 computer. The level of significance will be a minimum of 5% (p < 0.05) and all tests will be two-tailed. The summary tables will indicate the level of significance detected. The sample size, mean and standard deviation will be presented. The control group data will be compared to the treated data using all groups or by an individual group by group comparison depending on the test. Data including body weights, body weight gains, food consumption, gestation length, pup body weights and mean live litter size will be analyzed by one way analysis of variance. If significance is detected, control to treatment group comparison will proceed with Dunnett's test. Count data will be tested using Chi-Square for copulation and fertility indices, pup sex ratios, the number of live and dead pups per group (on lactation day 0), and pup survival (after lactation day 0).

X. MAINTENANCE OF RAW DATA, RECORDS AND SPECIMENS

All original data, specimens and reports from this study are the property of the Sponsor. These materials shall be available at SLI to facilitate auditing of the study during its progress and prior to acceptance of the final report. Following study completion, all original paper data, magnetically encoded records, tissues, tissue blocks, slides and the final report will be transferred to the SLI archives and stored for a minimum of 10 years. The Sponsor will be contacted prior to the final disposition of these materials. Records to be maintained shall include the following, as applicable:

- Protocol and any amendments
- Animal receipt, acclimation, randomization and final disposition
- In-life records such as mortality/general health checks, animal husbandry, clinical observations, body weights, and other relevant in-life data
- Computer records such as computer protocols, operator lists, edits and edit checks
- Necropsy, histology and pathology records
- Clinical pathology records and QC results
- Pharmacy records including test article receipt, inventory, preparation, dispensation and disposition
- Analytical analyses related to the test article
- Water and feed analyses/certifications
- Specimen retention and inventory records
- All correspondence related to the study
- QA inspections and related reports

XI. REGULATORY COMPLIANCE

The study will be conducted in accordance with the Principles of Good Laboratory Practice set forth by the OECD [C(97)186/FINAL].

XII. QUALITY ASSURANCE

At least one critical phase of this study will be inspected by Springborn Laboratories, Inc., Quality Assurance Unit while in progress to assure compliance with Good Laboratory Practices, SLI's Standard Operating Procedures and for conformance with the protocol and protocol amendments. The final report will be audited prior to submission to the Sponsor to ensure that it completely and accurately describes the test procedures and results of the study.

XIII. ANIMAL WELFARE COMPLIANCE STATEMENT

In order to ensure the welfare of the animals used on this project, this study will comply with all applicable sections of the Final Rules of the Animal Welfare Act regulations (9 CFR) and the Public Health Service Policy on Humane Care and Use of Laboratory Animals (OPRR, NIH, 1986). All procedures conducted on the

animals have been approved by the Springborn Laboratories, Inc. Institutional Animal Care and Use Committee (SLI IACUC) and are described in the study protocol and/or the standard operating procedures of this institution. These procedures are based on the most currently available regulatory accepted technologies. The SLI IACUC has approved the use of a maximum of 250 F0 animals on this study.

In order to reduce the possibility of animals being exposed to overt pain/distress, the animals used on this study will be observed daily by the technical staff and monitored as necessary by the Study Director or Facility Veterinarian. If an animal is determined to be in overt pain/distress, the animal will be euthanized for humane reasons in accordance with the Report of the AVMA on Euthanasia [3]. In addition, if an animal appears moribund and is beyond the point where recovery appears reasonable, the animal will be euthanized for humane reasons. Anesthetics/analgesics will not be used on this study since such treatment could interfere with the study and confound the results.

XIV. DECLARATION OF INTENT

This study will be listed on the SLI Quality Assurance Master Schedule for the OECD.

(Principal Investigator)

XV. PROTOCOL APPROVAL

The Sponsor's signature below documents that there are no acceptable non-animal alternatives for this study, and that since this study is required by the relevant supervising government agency, it does not unnecessarily duplicate any previous experiments.

Joseph C. Siglin, Ph.D., DABT	Date: 7/9/98
Joseph C. Siglin, Ph.D.,/DABT Study Director (SLI)	
Malcolm Blair, Ph.D.	Date: 7/9/98
Vice President and Managing Director (SLI)	
Quality Assurance Unit (SLI)	Date: <u>7-9-98</u>
Dle. BD	Date: 7/10/98
Hudson K. Bates, Ph.D., DABT Sponsor's Representative	
oponsol s Nepleselitative	

XVI. REFERENCES

- 1. Guide for the Care and Use of Laboratory Animals, DHHS Publication No. (NIH) 96-03, 1996.
- 2. Salewski, V.E. Färbemethode zum makroskopischen Nachweis von Implantations-stellen am Uterus der Ratte, <u>Naunyn-Schm. Archiv. Für Exper. Pathologie und Pharm.</u>, 247:367, 1964.
- 3. 1993 Report of the American Veterinary Medical Assoc. Panel on Euthanasia, JAVMA, Vol. 202, No. 2, pp. 229-249, January 15, 1993.

ATTACHMENT 1

A Preliminary Probe Study in Rats

A preliminary probe study will be performed to assist in dosage level selection for the one-generation reproduction range-finding study. Receipt, animal husbandry and acclimation will be as described in the main study protocol, with the following additional procedures specified below.

A. Acclimation and Randomization

Animals designated for possible assignment to the probe study will be acclimated for a minimum of 5 days. On study day -1, rats will be weighed and examined in detail for signs of physical disorder (detailed clinical observations). Animals determined to be suitable as test subjects will be assigned randomly to groups in stratified block design based on body weights. Disposition of animals not selected for study will be documented in the study records.

B. Study Group Design

The experimental design for the probe study is as follows:

	No. of Animals			Dosage	Dosage	Dosage
Group	Male	Female	Dosage Material	Level (mg/kg/day)	Conc. (mg/mL)	Volume (mL/kg)
1	2	2	Vehicle ^a	0	0	10
2	2	2	NSH⁵	5.0	0.5	10
3	2	2	NSH	15.0	1.5	10
4	2	2	NSH	25.0	2.5	10
5	2	2	NSH	50.0	5.0	10
6	2	2	NSH	75.0	7.5	10
7	2	2	NSH	150.0	15.0	10

^aRO-Di water.

^bNSH = Nickel sulfate hexahydrate (in aqueous solution).

C. Treatment

Oral (gavage) administration. The test article and vehicle will be administered once daily, by oral gavage, for 14 consecutive days. Control animals will receive the vehicle at a dosage volume comparable to that received by the test animals. The gavage needle will be wiped with gauze just prior to each dose administration. All attempts will be made to complete dosing by 10:00 a.m. on each day. Individual doses will be based on the most recent body weight. If severe toxicity develops, dosing may be discontinued and the affected group(s) may be euthanized and necropsied as described below.

D. Clinical Signs

The animals will be checked for general health/mortality and moribundity twice daily, in the morning and afternoon. The rats will be examined daily for clinical signs of toxicity (cage-side observations) between one-half and two hours after dosing.

E. Body Weights

Each animal will be weighed prior to the initiation of treatment on day -1. During the study period, the individual body weights will be recorded on days 1, 8 and 15.

F. Unscheduled Deaths and Scheduled Euthanasia

Any animals showing signs of severe debility or toxicity, particularly if death appears imminent, will be euthanized moribund (carbon dioxide inhalation). Any animal found dead after routine working hours will be refrigerated until the next scheduled work day. All surviving animals will be euthanized on study day 15 (carbon dioxide inhalation).

All animals will be subjected to an abbreviated gross necropsy examination at the time of death or scheduled euthanasia. The necropsy examination will include examination of the external surfaces of the body and major tissues and organs in the thoracic, abdominal and pelvic cavities. No tissues will be retained.

G. Data Reporting

Results of this preliminary study will be reported in a separate appendix within the one-generation study report. This information will be provided to the Sponsor for selection of dosage levels for the one-generation study. No inferential statistical analyses will be performed on the probe data.

Page 1 of 3

A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE

PROTOCOL AMENDMENT NO. 1

1) PART TO BE CHANGED/REVISED (Effective July 7, 1998):

V.C.5. Number of Animals/Sex on Study

CHANGE/REVISION:

Delete the following sentence: "Males and females will have different birth dates to avoid potential sibling pairings."

REASON FOR CHANGE/REVISION:

Sibling matings will be avoided by obtaining males and females from different production rooms within the supplier's facility, not by different birth dates.

2) PART TO BE CHANGED/REVISED (Effective July 31, 1998):

VI.A. Study Group Design

CHANGE/REVISION:

Dose levels, concentrations and volume for the study will be as follows:

	No. of Parental Animals			Dosage Level	Dosage Conc.	Dosage Volume
Group	Male	Female	Dosage Material ^a	Level (mg/kg/day) ^b	Conc. (mg/mL)	Volume (mL/kg)
1	8	8	Vehicle	0	0	10
2	8	8	NSH	10	1.0	10
3	8	8	NSH	20	2.0	10
4	8	8	NSH	30	3.0	10
5	8	8	NSH	50	5.0	10
6	8	8	NSH	75	7.5	10

^{*}Vehicle = RO-Di water; NSH = Nickel sulfate hexahydrate (in aqueous solution).

Dosage levels for the range-finding study will be selected based upon results of a preliminary probe study (see Attachment 1).

Page 2 of 3

A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE

PROTOCOL AMENDMENT NO. 1

REASON FOR CHANGE/REVISION:

To reflect dose levels selected by the Sponsor, and related concentrations and volume information.

3) PART TO BE CHANGED/REVISED (Effective August 17, 1998):

VI.C.3.b. Body Weights--F0 Animals

CHANGE/REVISION:

Change gestation day 21 to gestation day 20.

REASON FOR CHANGE/REVISION:

To avoid missing any late gestation body weights due to delivery.

4) PART TO BE CHANGED/REVISED:

VI.C.5.b. Food and Water Consumption—F0 Animals (Effective August 17, 1998):

CHANGE/REVISION:

Change reference from gestation day 21 to gestation day 20.

REASON FOR CHANGE/REVISION:

To parallel body weight days.

5) PART TO BE CHANGED/REVISED:

VI.F.1. Method of Individual Pup Identification (Effective July 7, 1998):

Date: 8-28-98

A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE

PROTOCOL AMENDMENT NO. 1

CHANGE/REVISION:

Replace this section with the following:

On lactation day 0 each pup will be individually identified by tail tattooing.

REASON FOR CHANGE/REVISION:

Because dead pups are assigned numbers first, consecutive numbering does not always begin with the male offspring.

Date: _ 8/20/98 Study Director (SLI) Date: 8-20-9

Hudson K. Bates, Ph.D., DABT Sponsor's Representative

(Principal Investigator)

Quality Assurance Unit (SLI)

Page 1 of 2

A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE

PROTOCOL AMENDMENT NO. 2

1) PART TO BE CHANGED/REVISED (Effective July 14, 1998):

IV.E. Method and Frequency of Test Article Preparations

CHANGE/REVISION:

Delete the second paragraph from this section and replace it with the following:

Homogeneity of the test article in the vehicle will be evaluated by analyzing duplicate 10 mL samples taken from the top, middle, and bottom of two concentrations: 0.1 mg/mL and 7.5 mg/mL. These concentrations are expected to encompass the high and low concentrations for the range-finding study. Stability of the test article in the vehicle will be assessed by analyzing duplicate 10 mL samples taken from the middle of each concentration (0.1 and 7.5 mg/mL) following 24 hours of room temperature storage, and following 7, 14 and 21 days of refrigerated storage.

At the first preparation of dosing solutions for the range-finding study, duplicate 10 mL samples will be taken from each gavage solution, including the vehicle, and submitted for analytical analysis.

The analytical samples will be packed in ice and shipped by overnight courier to Lancaster Laboratories for analysis by Atomic Absorption. The stability samples will be sent in separate shipments, at the time points indicated above. The samples will be shipped to the following address:

Lancaster Laboratories 2425 New Holland Pike P.O. Box 12425 Lancaster, PA 17605-2425 Attention: Sample Administration

REASON FOR CHANGE/REVISION:

Analytical chemistry analyses were added to the protocol to verify homogeneity, stability and concentration of the test article in the vehicle.

Date: 8/26/98

A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE

PROTOCOL AMENDMENT NO. 2

2)	PARI	TO BE CHANGED/REVISED	(Effective	July	7,	1998):
	V.C.2.	Strain				

CHANGE/REVISION:

Jøseph C. Siglin, Ph.D/, DABT

Change the rat strain designation from Crl:CD®BR VAF/Plus® to Crl:CD®(SD)IGS BR

REASON FOR CHANGE/REVISION:

This is the supplier's new strain designation for Sprague-Dawley rats derived from their "International Genetic Standard" stock.

Study Director (SLI)

Date: 8-26-98

Quality Assurance Unit (SLI)

Hudson K. Bates, Ph.D., DABT
Sponsor's Representative

Date: 8:28:98

(Principal Investigator)

A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE

PROTOCOL AMENDMENT NO. 3

- 1) PART TO BE CHANGED/REVISED (Effective March 25, 1999):
 - III. PROPOSED STUDY SCHEDULE

CHANGE/REVISION:

Replace this section with the following:

A. Initiation of In-Life Phase: July 14, 1998

B. Completion of In-Life Phase: October 30, 1998

C. Audited Draft Report Date: March 25, 1999

REASON FOR CHANGE/REVISION:

To include the study dates.

2) PART TO BE CHANGED/REVISED (Effective October 23, 1998):

VI.B. Treatment

CHANGE/REVISION:

Replace the sixth sentence in this section with the following:

Study animals will receive continuous exposure to the control or test article throughout the study, at the appropriate levels, until the day prior to or the day of scheduled euthanasia.

REASON FOR CHANGE/REVISION:

Surviving selected F1 pups will be euthanized and necropsied on the day after each pup receives its 21st dose. The necropsies will begin on October 23, 1998. Animals to be necropsied on this day will have received 22 doses since they were dosed on October 23, 1998. All other animals will not be dosed on the day of scheduled euthanasia.

A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE

PROTOCOL AMENDMENT NO. 3

3) PART TO BE CHANGED/REVISED (Effective September 11, 1998):

Protocol Amendment No. 1, Part 5

CHANGE/REVISION:

Replace the first sentence in this section with the following:

On lactation day 0, each viable pup will be identified by tail tattooing and nonviable pups will be identified by indelible ink.

REASON FOR CHANGE/REVISION:

Live pups and dead pups will be identified differently.

4) PART TO BE CHANGED/REVISED (Effective September 22, 1998):

VI.I.1. Unscheduled Deaths-F0 and Selected Animals

CHANGE/REVISION:

Add the following paragraph to this section:

The litter for F0 group 3 female #177 (found dead on September 22, 1998) will be euthanized by carbon dioxide inhalation and discarded without necropsy. No tissues will be retained.

REASON FOR CHANGE/REVISION:

Additional information was provided.

A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE

PROTOCOL AMENDMENT NO. 3

PART TO BE CHANGED/REVISED (Effect	tive Jul	v 9.	. 1998)
--	----------	------	---------

IX. STATISTICAL ANALYSIS

CHANGE/REVISION:

Replace the sixth sentence and add the following sentence:

Data including body weights, body weight gains, food consumption, water consumption, gestation length, pup body weights and mean live litter size will be analyzed by one way analysis of variance.

The Mann-Whitney U test will be used to compare post-implantation loss.

REASON FOR CHANGE/REVISION:

The statistical method for water consumption and post-implantation loss was omitted from the original protocol.

Joseph C Anglai	Date 3-25-99	
Joseph C. Siglin, Ph.D., DABT Study Director (SLI)		

Quality Assurance Unit (SLI)

Hudson K. Bates, Ph.D., DABT Sponsor's Representative (Principal Investigator) Date <u>3-25-99</u>

Date /2-/8-00

The following protocol deviations and occurrences were noted during the conduct of the study. None of the noted deviations or occurrences impacted the validity or integrity of the study.

- 1. Acclimation observations were not performed on one occasion due to a power outage.
- 2. On two days during the preliminary probe study, the animal room temperature was outside the specified range of 65 to 79°F. The actual animal room temperature ranged from 63 to 70°F. On two days during the preliminary probe study, the animal room relative humidity was outside the specified range of 30 to 70%. The actual animal room relative humidity was recorded as 36 to 102% (102% on two occasions). On eight days during the range-finding study, the animal room relative humidity was outside the specified range of 30 to 70%. The actual animal room relative humidity ranged from 17 to 63%.
- It was not documented that the gavage needle was wiped with gauze just prior to each dose administration for the preliminary probe study and the range-finding study.
- 4. On study day 9 of the preliminary probe study, group 2 female #178 was found to have delivered pups in its cage. This animal was euthanized and necropsied. The surviving offspring were euthanized and discarded. The animal supplier was notified of this occurrence, since these animals were supposed to be nulliparous and nonpregnant.
- On two days during the range-finding study, three mortality checks, rather than two, were performed.
- 6. It was not documented on gestation day 13 of the range-finding study that F0 group 3 female #242 was dosed.
- 7. The start day of parturition was recorded as lactation day 0, rather than the completion day of parturition, for F0 group 6 females #244 and #245 in the range-finding study. Parturition for these females was initiated on one day and completed on the following day. Pups that died on either day were recorded as dead on lactation day 0.
- 8. On lactation day 6 of the range-finding study, F0 group 5 female #194 was dosed 2.2 mL more than the intended dose.

- 9. On study day 17 of the range-finding study, group 4 (30 mg/kg/day) F1 animals were dosed with a dosing solution from another study. However, the animals did not exhibit any adverse clinical signs following dosing. The Sponsor was informed of this error when it was discovered. Dosing of the correct dosing solution was resumed the following day.
- 10. Positive evidence of copulation was not observed for F0 group 5 female #227 after 14 days of mating. The female was separated from the male, however, the female was not placed in a plastic cage containing nesting material. This female was later found to be nongravid.
- 11. The method of euthanasia was not recorded for group 2 female #178 in the preliminary probe study; F0 group 1 female #219, F0 group 4 female #222 and F0 group 5 female #227 in the range-finding study; and the F1 selected pups in the range-finding study.

APPENDIX C

Certificate of Analysis (as Provided by Aldrich Chemical Company) and Analytical Chemistry Results (as Provided by Lancaster Laboratories)

CERTIFICATE OF ANALYSIS Page 1062

SPRINGBORN LABORATORIES 419 647 4438 PENNY KAPUT

PO NBR:

PRODUCT NUMBER: 22767-6

LOT NUMBER: 08516TQ

PRODUCT NAME: NICKEL(II) SULFATE HEXAHYDRATE, 99%,

A.C.S. REAGENT

FORMULA: NISO4.6H20

FORMULA WEIGHT: 262.84

APPEARANCE

BLUE-GREEN CRYSTALS

TITRATION

98.5% (COMPLEXOMETRIC)

ICP ASSAY

CONFIRMS NICKEL AND SULFUR COMPONENTS.

SUITABLE IDENTIFICATION IN LIEU OF XRAY.

INSOLUBLE MATTER

<0.001% *

SOLUBILITY

1 GM IN 7.5ML H20; CLEAR, GREEN SOLUTION.

ACS TESTS

<0.001% CO *

CALCIUM

<0.0001% *

CHLORIDE

<0.001% *

COPPER

<0.0001% *

IRON

0.0006% *

POTASSIUM

<0.001% *

MAGNESIUM

<0.0001% *

MANGANESE

<0.0001% *

CONTINUED ON NEXT PAGE

ALDRICH CHEMICAL COMPANY DAVID SWESSEL JULY 10. 1998

chemists helping chemists in research & industry

ALDRICH warrants that its products conform to the information contained in this and other Aktrich publications. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

CERTIFICATE OF ANALYSIS Page 2482

SPRINGBORN LABORATORIES 419 647 4438 PENNY KAPUT

PO NBR:

PRODUCT NUMBER: 22767-6

LOT NUMBER: 08516TQ

PRODUCT NAME: NICKEL(II) SULFATE HEXAHYDRATE, 99%,

A.C.S. REAGENT

FORMULA: NISO4-6H2O

FORMULA WEIGHT: 262.84

CONTINUED FROM PREVIOUS PAGE

SODIUM

<0.001% *

NITROGEN COMPOUNDS

<0.001% *

SUPPLIER CERTIFICATE

ALDRICH CHEMICAL CUMPANY DAVID SWESSEL JULY 10, 1998

ALDRICH warrants that its products conform to the information contained in this and other Aldrich publications. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

Where quality is a science.

Quality Assurance Statement

Springborn Study Number: 3472.3

This study was inspected by the Lancaster Laboratories' Quality Assurance Unit on July 30 and August 27, 1998. The inspection reports were circulated to Lancaster Laboratories' management on September 8, 1998. The inspection reports were sent to the study director and study director management on September 9, 1998.

The analysis reports and raw data for Springborn Study Number 3472.3(Lancaster Laboratories' sample numbers: 2965531-5542, 2967458-461, 2969792-795, 2974207-210, 2978139-142, and 2986512-523) were compared and audited for accuracy by the Lancaster Laboratories' Quality Assurance Unit.

Quality Assurance Senior Specialist

Springborn Laboratories

Nickel Sulfate Hexahydrate Homogeneity Study

	LL Sample	Concentration Nickel Sulfate		
Designation	Number	Hexahydrate (mg/mL)	Statistics Summary	
0.1 mg/mL Bottom	2965535	0.108	Average mg/mL =	0.108
0.1 mg/mL Bottom Duplicate	2965536	0.107	RSD =	0.66%
0.1 mg/mL Middle	2965533	0.108	Average mg/mL =	0.108
0.1 mg/mL Middle Duplicate	2965534	0.108	RSD =	0.00%
0.1 mg/mL Top	2965531	0.109	Average mg/mL =	0.108
0.1 mg/mL Top Duplicate	2965532	0.107	RSD =	1.31%

Overall Average mg/mL = 0.108

RSD = 0.70%

	LL Sample	Concentration Nickel Sulfate		
Designation	Number	Hexahydrate (mg/mL)	Statistics Summary	
7.5 mg/mL Bottom	2965541	7.614	Average mg/mL =	7.588
7.5 mg/mL Bottom Duplicate	2965542	7.561	RSD =	0.49%
7.5 mg/mL Middle	2965539	7.561	Average mg/mL =	7.509
7.5 mg/mL Middle Duplicate	2965540	7.456	RSD =	0.99%
7.5 mg/mL Top	2965537	7.561	Average mg/mL =	7.482
7.5 mg/mL Top Duplicate	2965538	7.403	RSD =	1.49%

Overall Average mg/mL = 7.526

1.05%

LAWASTER LABS SOMPLE LUMBERS:

AMPLE LUMBERS:

JATA PACKAGE NSB GO

JATA FACKAGE NSB GO

JATA 139-40 RESULTS ARE IN DATA PACKAGE NSH & 3

JAGATA 2-40 RESULTS ARE IN DATA PACKAGE NSH & 3

JAGATA 2-95 RESULTS ARE IN DATA PACKAGE NSH & 3

Lancaster Laboratories Confidential

Springborn Laboratories

Nickel Sulfate Hexahydrate Stability Study

	LL Sample	Concentration Nickel Sulfate		
Designation	Number	Hexahydrate (mg/mL)	Statistics Summary	
0.1 mg/mL 24 Hour RT	2967458	0.108	Average mg/mL =	0.108
0.1 mg/mL 24 Hour RT Duplic	2967459	0.107	RSD =	0.66%
0.1 mg/mL Day 7	2969792	0.107	Average mg/mL =	0.108
0.1 mg/mL Day 7 Duplicate	2969793	0.109	RSD =	1.31%
0.1 mg/mL Day 14	2974207	0.105	Average mg/mL =	0.103
0.1 mg/mL Day 14 Duplicate	2974208	0.101	RSD =	2.75%
0.1 mg/mL Day 21	2978139	0.105	Average mg/mL =	0.104
0.1 mg/mL Day 21 Duplicate	2978140	0.103	RSD =	1.36%

Overall Average mg/mL = 0.106

RSD = 2.53%

	LL Sample	Concentration Nickel Sulfate		
Designation	Number	Hexahydrate (mg/mL)	Statistics Summary	
7.5 mg/mL 24 Hour RT	2967460	7.403	Average mg/mL =	7.456
7.5 mg/mL 24 Hour RT Duplic	2967461	7.509	RSD =	1.01%
7.5 mg/mL Day 7	2969794	7.403	Average mg/mL =	7.245
7.5 mg/mL Day 7 Duplicate	2969795	7.086	RSD =	3.09%
7.5 mg/mL Day 14	2974209	7.661	Average mg/mL =	7.552
7.5 mg/mL Day 14 Duplicate	2974210	7.443	RSD =	2.04%
7.5 mg/mL Day 21	2978141	7.661	Average mg/mL =	7.661
7.5 mg/mL Day 21 Duplicate	2978142	7.661	RSD =	0.00%

Overall Average mg/mL = 7.478

RSD = 2.61%

50 m Stal 8 57.98

Springborn Laboratories

Nickel Sulfate Hexahydrate Stability Study

Springborn Laboratories

Nickel Sulfate Hexahydrate Concentration Verification - RF Study

	LL Sample	Concentration Nickel Sulfate		
Designation	Number	Hexahydrate (mg/mL)	Statistics Sur	nmary
0 mg/mL	2986512	0.000	Average mg/mL =	0.000
0 mg/mL Duplicate	2986513	0.000	RSD =	0.00%
			Recovery =	N/A
1.0 mg/mL	2986514	1.053	Average mg/mL =	1.059
1.0 mg/mL Duplicate	2986515	1.064	RSD =	0.73%
			Recovery =	105.9%
2.0 mg/mL	2986516	2.058	Average mg/mL =	2.094
2.0 mg/mL Duplicate	2986517	2.129	RSD =	2.40%
			Recovery =	104.7%
3.0 mg/mL	2986518	3.118	Average mg/mL =	3.127
3.0 mg/mL Duplicate	2986519	3.136	RSD =	0.41%
			Recovery =	104.2%
5.0 mg/mL	2986520	5.31	Average mg/mL =	5.304
5.0 mg/mL Duplicate	2986521	5.298	RSD =	0.16%
			Recovery =	106.1%
7.5 mg/mL	2986522	8.013	Average mg/mL =	8.013
7.5 mg/mL Duplicate	2986523	8.013	RSD =	0.00%
			Recovery =	106.8%

8:3198 Page 1

SLI Study No. 3472.3

APPENDIX D

Individual F0 Survival and Clinical Observations (Positive Findings)

APPENDIX D	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS	WI TH NI CKEL SULFATE HEXAHYDRATE	INDI VI DUAL FO SURVI VAL AND CLI NI CAL OBSERVATI ONS
	SLI STUDY NO.: 3472.3	CLI ENT: NI PERA, INC.	

PAGE

(POSI TI VE FINDINGS)

	GRADE OBSERVATIONS	SCHEDULED EUTHANASIA DARK MATERIAL AROUND NOSE SCHEDULED EUTHANASIA		SCHEDULED EUTHANASIA DARK MATERIAL AROUND NOSE INCISOR(S) - BROKEN INCISOR(S) - BROKEN SCHEDIII EN EITHANASIA	SCHEDULED EUTHANASIA SCHEDULED EUTHANASIA MALLIGUMENT SCAB(S) - AROUND EYE(S) MALALIGUMENT SCAB(S) - AROUND MOUTH INCISOR(S) TRIMMED MALALIGUMENT MALALIGUMENT INCISOR(S) TRIMMED DARK MATERIAL AROUND EYE(S) DARK MATERIAL AROUND NOSE REDDISH NASAL DISCHARGE LABORED BREATHING SALIVATION DARK MATERIAL AROUND EYE(S)
101	GR	- 4	. A	4 4 4 4	x c c c c c c c c c c c c c c c c c
CBM I TA II I CO I		49 29 49	49 8 8 29 49	49 22 29 49	4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	DAY	STUDY DAY STUDY DAY STUDY DAY		STUDY DAY STUDY DAY STUDY DAY STUDY DAY	
	CATEGORY	DEAD NOSE/MOUTH DEAD	DEAD BODY BODY BODY BODY	DEAD NOSE/MOUTH NOSE/MOUTH NOSE/MOUTH	DEAD NOSE/MOUTH ACTIVITY ACTIVITY EYES
	GROUP	0 MG/KG/DAY 0 MG/KG/DAY	0 MG/KG/DAY 0 MG/KG/DAY	0 MG/KG/DAY	O MG/KG/DAY O MG/KG/DAY
1	. NO.	W W	M M	W 2	× ×
	ANI MAL NO	16996 16997	17010	17032	17033 17035

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

A ONE-GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS	WI TH NI CKEL SULFATE HEXAHYDRATE	INDITION OF TAXABLE OF TAXABBLE OF TAXABLE OF TAXABBLE OF TAXABLE
3472.3	INC.	
SLI STUDY NO.:	CLI ENT: NI PERA,	
	STUDY NO.: 3472.3	STUDY NO.: 3472.3 NT: NI PERA, INC.

~

PAGE

INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS

(POSITIVE FINDINGS)

GROUP CATEGORY DAY GRADE OBSERVATIONS	O MG/KG/DAY EXCRETA/EMESIS STUDY DAY 31 P FEW FECES BODY STUDY DAY 31 P SWELLING - RIGHT LATERAL THORACIC DEAD STUDY DAY 31 P INSCHEDILED FUTHANASIA - MORI BIND	STUDY DAY 49 P SCHEDULED EUTHANASIA STUDY DAY 8 P DARK MATERIAL AROUND NOSE	DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA STUDY DAY 29 P DARK MATERIAL AROUND	DEAD 10 MG/KG/DAY NOSE/MOUTH DEAD	10 MG/KG/DAY BODY STIDY DAY 1 1 HAIRLOSS STIDY DAY 8 1 HAIRLOSS STIDY DAY 8 1 HAIRLOSS	DAY 29 1 1 DAY 36 P 5	STUDY	STUDY DAY 49 1 1	10 MG/KG/DAY BODY STUDY DAY 8 1 HAIRLOSS	BODY STUDY DAY 15 1 1	STUDY DAY	STUDY DAY 36 1 1	STUDY DAY 43 1 I	STUDY DAY 49 1 HAIRLOSS	DEAD STUDY DAY 49 P SCHEDULED	10 MG/KG/DAY DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA	DEAD STUDI DAI 43 F SCHEDULED I
	! !															10 MG/KG	10 MG/ NG
 ANIMAL NO.	17035 M	17036 M 17009 M		17015 M	17017 M				17020 M							17044 M	1,040 M

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

APPENDI X D	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS	WITH NICKEL SULFATE HEXAHYDRATE	
	3472.3	, INC.	
	SLI STUDY NO.:	CLI ENT: NI PERA,	

3

PAGE

INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS

2	7
ζ	_
7	2
2	
ξ	2
17 17	_
	_
۲	_
Ė	-
۲	,
ב	
۶	١
`	-

GRADE OBSERVATIONS	HAIRLOSS		邑	SCAB(S) - LEFT PINNA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASI A	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	HAI RLOSS	SCAB(S) - RIGHT FORELIMB	HAI RLOSS	DARK MATERIAL AROUND NOSE	HAI RLOSS	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASI A	DARK MATERIAL AROUND NOSE	SCHEDULED EUTHANASIA	ENLARGEMENT - TAIL	ENLARGEMENT - TAIL	ENLARGEMENT - TAIL	DARK MATERIAL AROUND NOSE	ENLARGEMENT - TAIL	SCHEDULED EUTHANASIA
GRA	-	_	Д	Ь	Ы	Д	Д	Ы	Ы	Д	Ы	_	Ы	_	Ь	_	Д	Д	Ы	Д	Ь	Д	Ь	Ь	Ь	Ь	Д	Ы
	15	22	49	22	49	49	49	49	49	49	49	∞	∞	15	29	49	49	49	49	49	22	49	22	29	36	36	49	49
DAY	; - '	STUDY DAY			STUDY DAY		STUDY DAY						STUDY DAY								STUDY DAY			STUDY DAY			STUDY DAY	STUDY DAY
CATEGORY	BODY	BODY	DEAD	BODY	DEAD	DEAD	DEAD	DEAD	DEAD	DEAD	DEAD	BODY	BODY	BODY	NOSE/MOUTH	BODY	DEAD	DEAD	DEAD	DEAD	NOSE/MOUTH	DEAD	BODY	BODY	BODY	NOSE/MOUTH	BODY	DEAD
GROUP	20 MG/KG/DAY			20 MG/KG/DAY		20 MG/KG/DAY	20 MG/KG/DAY		20 MG/KG/DAY	20 MG/KG/DAY	20 MG/KG/DAY	30 MG/KG/DAY						30 MG/KG/DAY	30 MG/KG/DAY	30 MG/KG/DAY	30 MG/KG/DAY		30 MG/KG/DAY					
NO.	×			M		M	M	M	M	M	M	M						M	M	×	M		M					
ANIMAL NO	16990			16999		17002	17008	17039	17040	17042	17045	17001						17005	17007	17012	17013		17023					

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

3472. 3 INC.

INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS

PAGE

(POSI TI VE FINDINGS)

DAY BODY STUDY DAY 15 BODY STUDY DAY 22 BODY STUDY DAY 29 DAY DEAD STUDY DAY 49 DAY BODY STUDY DAY 49 DAY DEAD STUDY<	ANT MAI NO	CROTTE	CATECORY	NAV		CPAI	CRADE ORCERVATIONS
BODY STUDY DAY 15 1 HAI RLOSS BODY STUDY DAY 22 1 HAI RLOSS BODY STUDY DAY 49 P SCHEDULED EUTHANASI A DEAD STUDY DAY 49 P SCHEDULED EUTHANASI A BODY STUDY DAY 49 P SCHEDULED EUTHANASI A BODY STUDY DAY 43 P SCHEDULED EUTHANASI A BODY STUDY DAY 49 P SCHEDULED EUTHANASI A DEAD STUDY DAY 49 P SCHEDULED EUTHANASI A		GROUF	CALEGORI	IMI		GIVE	DE UBSERVATIONS
BODY STUDY DAY 22 I HAI RLOSS DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA NOSE-MOUTH STUDY DAY 49 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P SCHEDULED EUTHANASIA DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA		30 MG/KG/DAY	BODY	. –	15	1 1	HAI RLOSS
BODY STUDY DAY 29 1 HAI RLOSS DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA NOSE-MOUTH STUDY DAY 49 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P SCHEDULED EUTHANASIA BODY STUDY DAY 43 P PURPLE DI SCOLORATION - LEFT HINDLIMB BODY STUDY DAY 49 P SCHEDULED EUTHANASIA DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA			BODY		22	1	HAI RLOSS
DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA NOSE/MOUTH STUDY DAY 49 P SCHEDULED EUTHANASIA BODY STUDY DAY 43 P SCHEDULED EUTHANASIA BODY STUDY DAY 43 P SCHEDULED EUTHANASIA BODY STUDY DAY 43 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P SCHEDULED EUTHANASIA DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA			BODY	_	29	1	HAI RLOSS
DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA NOSE/MOUTH STUDY DAY 49 P SCHEDULED EUTHANASIA BODY STUDY DAY 43 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P SCHEDULED EUTHANASIA DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA			DEAD	_	49	Ы	
DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA NOSE/MOUTH STUDY DAY 49 P SCHEDULED EUTHANASIA BODY STUDY DAY 43 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P PURPLE DI SCOLORATION - LEFT HINDLIMB BODY STUDY DAY 49 P PURPLE DI SCOLORATION - LEFT HINDLIMB DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA DEAD STUDY DAY 49 P SCHEDULED	×	30 MG/KG/DAY	DEAD	_	49	Ы	
DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA NOSE/MOUTH STUDY DAY 43 P INCISOR(S) - BROKEN DEAD STUDY DAY 43 P SCHEDULED EUTHANASIA BODY STUDY DAY 43 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P SCHEDULED EUTHANASIA DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA	×	50 MG/KG/DAY	DEAD	_	49	Ы	
DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA NOSE/MOUTH STUDY DAY 15 P INCISOR(S) - BROKEN DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P SCHEDULED EUTHANASIA DEAD STUDY DAY	M	50 MG/KG/DAY	DEAD	_	49	Ы	
NOSE/MOUTH STUDY DAY 15 P INCISOR(S) - BROKEN DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA BODY STUDY DAY 43 P SWELLING - LEFT HINDLIMB BODY STUDY DAY 49 P PURPLE DISCOLORATION - LEFT HINDLIMB DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA POST- DOSE OBS STUDY DAY 49 P <t< td=""><td>×</td><td>50 MG/KG/DAY</td><td>DEAD</td><td>_</td><td>49</td><td>Ы</td><td>_</td></t<>	×	50 MG/KG/DAY	DEAD	_	49	Ы	_
DEAD STUDY DAY 49 P SCHEDULED EUTHANASI A BODY STUDY DAY 43 P SWELLING - LEFT HINDLIMB DIGIT (S) BODY STUDY DAY 49 P PURPLE DI SCOLORATI ON - LEFT HINDLIMB BODY STUDY DAY 49 P SCHEDULED EUTHANASI A DEAD STUDY <td>M</td> <td>50 MG/KG/DAY</td> <td>NOSE/MOUTH</td> <td>_</td> <td>15</td> <td>Ь</td> <td></td>	M	50 MG/KG/DAY	NOSE/MOUTH	_	15	Ь	
BODY STUDY DAY 43 P SWELLING - LEFT HINDLIMB DIGIT(S) BODY STUDY DAY 43 P PURPLE DISCOLORATION - LEFT HINDLIMB BODY STUDY DAY 49 P PURPLE DISCOLORATION - LEFT HINDLIMB DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA POST- DOSE OBS STUDY DAY 3 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P			DEAD		49	Ы	SCHEDULED EUTHANASIA
BODY STUDY DAY 43 P PURPLE DISCOLORATION - LEFT HINDLIMB BODY STUDY DAY 49 P PURPLE DISCOLORATION - LEFT HINDLIMB DEAD STUDY DAY 49 P SCHEDULED EUTHANASIA POST- DOSE OBS STUDY DAY 3 P SCHEDULED EUTHANASIA BODY STUDY DAY 49 P SCHEDULED	M	50 MG/KG/DAY	BODY	_	43	Ы	
BODY STUDY DAY 49 P PURPLE DI SCOLORATI ON - LEFT HINDLI MB DEAD STUDY DAY 49 P SCHEDULED EUTHANASI A BODY STUDY DAY 49 P SCHEDULED EUTHANASI A BODY STUDY DAY 49 P SCHEDULED EUTHANASI A DEAD STUDY DAY 49 P SCHEDULED EUTHANASI A POST- DOSE OBS STUDY DAY 3 P SCHEDULED EUTHANASI A BODY STUDY DAY 49 P SCHEDULED EUTHANASI A BODY STUDY DAY 49 P SCHEDULED EUTHANASI A BODY STUDY DAY 49 P SCHEDULED EUTHANASI A BCAD STUDY DAY 49			BODY	_	43	P I	- LEFT HINDLIMB
DEAD STUDY DAY 49 P SCHEDULED EUTHANASI A DEAD STUDY DAY 49 P SCHEDULED EUTHANASI A DEAD STUDY DAY 49 P SCHEDULED EUTHANASI A DEAD STUDY DAY 15 1 FECAL SCHEDULED EUTHANASI A DEAD STUDY DAY 15 1 FECAL STHANASI A DEAD STUDY DAY 49 P SCHEDULED EUTHANASI A POST- DOSE OBS STUDY DAY 49 P SCHEDULED EUTHANASI A BODY STUDY DAY 49 P ACHEDULED EUTHANASI A			BODY	_	49	P I	- LEFT HINDLIMB
DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 15 1 FECAL STRDILED DEAD STUDY DAY 49 P SCHEDULED POST-DOSE OBS STUDY DAY 2 P ACTIVITY D BODY STUDY DAY 49 P SCHEDULED D DEAD STUDY DAY 49 P SCHEDULED D DEAD STUDY DAY 49 P SCH			DEAD	_	49	Ы	EUTHANASI A
DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED BODY STUDY DAY 49 P SCHEDULED BODY STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED POST- DOST- DAY 49 P SCHEDULED POST- DOST- DAY 49 P SCHEDULED BODY STUDY DAY 2 P ACTIVITY D BODY STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY	×	50 MG/KG/DAY	DEAD	_	49	Ы	_
DEAD STUDY DAY 49 P SCHEDULED BODY STUDY DAY 49 P SCHEDULED BODY STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED POST- DOSE OBS STUDY DAY 3 P SCHIVITY D BODY STUDY DAY 3 P SCHEDULED D DEAD STUDY DAY 36 1 URINES STUDY DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED	M	50 MG/KG/DAY	DEAD	_	49	Ы	
DEAD STUDY DAY 49 P SCHEDULED BODY STUDY DAY 15 1 FECAL STAID DEAD STUDY DAY 49 P SCHEDULED POST-DOSE OBS STUDY DAY 2 P ACTIVITY D POST-DOSE OBS STUDY DAY 3 P ACTIVITY D BODY STUDY DAY 36 1 URINE STAID DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED	×	50 MG/KG/DAY	DEAD	_	49	Ы	
BODY STUDY DAY 15 1 FECAL STAI DEAD STUDY DAY 49 P SCHEDULED POST- DOSE OBS STUDY DAY 2 P ACTIVITY DAY BODY STUDY DAY 3 P SALIVATION DEAD STUDY DAY 49 P SCHEDULED	×	75 MG/KG/DAY	DEAD	_	49	Ы	
DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED POST- DOST- DAY 2 P ACTIVITY POST- DOST- DAY 3 P ACTIVITY BODY STUDY DAY 36 1 URI NE STAI DEAD STUDY DAY 49 P SCHEDULED	×	75 MG/KG/DAY	BODY		15	1	FECAL STAIN
DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED POST-DOSE OBS STUDY DAY 2 P ACTIVITY DAY BODY STUDY DAY 3 P ACTIVITY DAY DEAD STUDY DAY 49 P SCHEDULED			DEAD		49	<u>а</u>	
DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED POST- DOSE STUDY DAY 2 P ACTIVITY DAY BODY STUDY DAY 3 P SALIVATION DEAD STUDY DAY 49 P SCHEDULED	Z	75 MG/KG/DAY	DEAD		49	Ы	
DEAD STUDY DAY 49 P SCHEDULED POST- DOSE OBS STUDY DAY 2 P ACTIVITY D POST- DOSE OBS STUDY DAY 36 1 URI NE STAI BODY STUDY DAY 36 1 URI NE STAI DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED	×	75 MG/KG/DAY	DEAD		49	Ы	
POST- DOSE OBS STUDY DAY 2 P ACTIVITY D POST- DOSE OBS STUDY DAY 3 P SALIVATION BODY STUDY DAY 36 1 URINE STAI DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED	M	75 MG/KG/DAY	DEAD		49	Д	
POST- DOSE OBS STUDY DAY 3 P SALIVATION BODY STUDY DAY 36 1 URI NE STAI DEAD STUDY DAY 49 P SCHEDULED	M	75 MG/KG/DAY			8	Ь	ACTIVI TY DECREASED
BODY STUDY DAY 36 1 URINE STAI DEAD STUDY DAY 49 P SCHEDULED				_	3	Ы	SALIVATION
DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED			BODY	_	36	1	URINE STAIN
DEAD STUDY DAY 49 P SCHEDULED DEAD STUDY DAY 49 P SCHEDULED			DEAD	_	49	Ы	
DEAD STUDY DAY 49 P SCHEDULED	M	75 MG/KG/DAY	DEAD	_	49	о _л	
	×	75 MG/KG/DAY	DEAD	_	49	Ы	

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

ιO																												
PAGE																												
APPENDIX D E-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	DAY GRADE OBSERVATIONS	LACTATION DAY 21 P SCHEDULED EUTHANASIA STIINY DAY 21 2 IDINE STAIN	DAY 1 1 1	DAY 2 1 1	DAY 3 1 1	DAY 8 1 1	DAY 9 1 HAI RLOSS	DAY 21 P SCHEDULED	DAY 21 P SCHEDULED	DAY ZI P	DAY 1 P	DAY 21 P	DAY 11 1	DAY 12 1 1	DAY 13 1 1	DAY 14 1 I	DAY 14 P I	DAY 15 1 I	GESTATION DAY 17 1 HAID INCOC	DAT 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L T OI ING	DAY 20 1 1	DAV 91	DAY 0 1 1	DAY 1 1 I	DAY 2 1 1	
A ONI		CATEGORY	DEAD	BODY	BODY	BODY	BODY	BODY	DEAD	DEAD	DEAD	BODY	DEAD	BODY	BODY	BODY	BODY	NOSE/MOUTH	BODY	BODY	BODI	DODY	BODI	DODY	BODY	BODY	BODY	
3472. 3 INC.		GROUP	O MG/KG/DAY	ING /DU /N						O MG/KG/DAY	O MG/KG/DAY	MG/KG/DAY		O MG/KG/DAY														
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	192 F 0	4					ı	206 F 0	ᆈ	<u>.</u>	ı	231 F 0														

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

9		1		
PAGE	1			
APPENDIX D E-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	POSI TI VE FINDI	DAY GRADE OBSERVATIONS	DAY 3 DAY 4 1 DAY 5 DAY 6 DAY 6 DAY 10 DAY 10 DAY 11 DAY 11 DAY 11 DAY 12 DAY 13 DAY 14 DAY 17 DAY 17 DAY 17 DAY 18 DAY 18 DAY 18 DAY 18 DAY 18 DAY 19 DAY 20 DAY 20 DAY 21 DAY 20 DAY 2	STUDY DAY 8 1 HAI RLOSS STUDY DAY 15 1 HAI RLOSS GESTATION DAY 1 1 HAI RLOSS GESTATION DAY 1 1 HAI RLOSS
A ONI		CATEGORY	800Y 800Y 800Y 800Y 800Y 800Y 800Y 800Y	B0DY B0DY B0DY B0DY
3472. 3 INC.		GROUP	O MG/KG/DAY	O MG/KG/DAY
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	[L4	233 F 0

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

PAGE 7																															
D ANGE-FINDING STUDY IN RATS E HEXARVDRATE CLINICAL OBSERVATIONS	NDI NGS)	GRADE OBSERVATIONS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS
APPENDIX D A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	DAY	GESTATION DAY 2	GESTATION DAY 3	_	_	_	GESTATION DAY 7	GESTATION DAY 8	GESTATION DAY 9	_	GESTATION DAY 11			DAY 1	DAY	DAY	DAY	DAY	DAY	DAY				DAY	_	DAY	DAY	_	DAY	LACTATION DAY 8
A ONE		CATEGORY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		ANIMAL NO. GROUP	233 F 0 MG/KG/DAY																												

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

	;		
∞			
PAGE			
APPENDIX D A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS W TH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	GRADE OBSERVATIONS	LACTATION DAY 10 HAI RLOSS
		CATEGORY	BODY BODY BODY BODY BODY BODY BODY BODY
3472. 3 INC.		GROUP	0 MG/KG/DAY 0 MG/KG/DAY 10 MG/KG/DAY 10 MG/KG/DAY
SLI STUDY NO.: CLIENT: NIPERA,		ANIMAL NO.	233 F 0 237 F 0 188 F 1 224 F 1

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

6												
PAGE			 									
APPENDIX D NE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSI TI VE FINDINGS)	GRADE OBSERVATIONS	7 P SWELLING - UPPER LIP 8 P INCISOR(S) - BROKEN 8 P SCAB(S) - AROUND MOUTH 9 P INCISOR(S) - BROKEN 10 P INCISOR(S) - BROKEN	11 P INCISOR(S) - BROKEN 21 P SCHEDULED EUTHANASIA 8 1 HATRIOSS	0 P SCHEDULED EUTHANASI A 21 P SCHEDULED EUTHANASI A 0 P REDUISH VACINAL DISCHARGE 21 D SCHEDHI ED EFFTHANASI A	나 다 다	1 1 HAI RLOSS 8 1 HAI RLOSS 15 1 HAI RLOSS	0 1 HAI RLOSS 1 1 HAI RLOSS 2 1 HAI PLOSS	2 1 HALLOSS 4 1 HAI RLOSS	5 1 HAI RLOSS 6 1 HAI RLOSS		9 1 HAI'RLOSS 10 1 HAI'RLOSS 11 1 HAI'RLOSS
APP E- GENERATI ON REPRODUCT WITH NICKEL S INDIVI DUAL FO SURVI VAI	II ISOA)	DAY	GESTATION DAY GESTATION DAY GESTATION DAY GESTATION DAY GESTATION DAY	DAY DAY	LACTATION DAY LACTATION DAY LACTATION DAY LACTATION DAY	DAY	STUDY DAY STUDY DAY STUDY DAY	GESTATION DAY GESTATION DAY				GESTATION DAY GESTATION DAY GESTATION DAY
A ONI		CATEGORY	NOSE/MOUTH NOSE/MOUTH NOSE/MOUTH NOSE/MOUTH NOSE/MOUTH	NOSE/MOUTH DEAD BODY	DEAD DEAD BODY PEAD	DEAD NOSE/MOUTH DEAD	BODY BODY BODY	BODY BODY BODY	BODY BODY BODY	BODY BODY	BODY	BODY BODY BODY
3472.3 , INC.		GROUP	10 MG/KG/DAY	10 MG/KG/DAY	10 MG/KG/DAY 10 MG/KG/DAY	10 MG/KG/DAY	10 MG/KG/DAY					
SLI STUDY NO.: CLIENT: NIPERA,		ANIMAL NO.	224 F	229 F	234 F 1 236 F 1	238 F	243 F					

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

10	!		
PAGE			
RATS		OBSERVATI ONS	HAI RLOSS
E- FINDING S' IEXAHYDRATE NICAL OBSER'	NGS)	GRADE OBSER	HAIRLOSS
APPENDIX D UCTION RANC L SULFATE F VAL AND CLI	(POSITIVE FINDINGS)		221 4 5 5 5 5 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
APPENDIX D IE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	IT ISOA)	DAY	GESTATION DAY LACTATION LACTAT
A ONE.		CATEGORY	800Y 800Y 800Y 800Y 800Y 800Y 800Y 800Y
3472. 3 . INC.		GROUP	10 MG/KG/DAY
SLI STUDY NO.: CLIENT: NIPERA,		ANIMAL NO.	243 F

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

11																	
PAGE																	
A ONE- GENERATI ON REPRODUCTI ON RANGE- FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	DAY GRADE OBSERVATIONS	ACTATION DAY 18 1 HAIRLOSS ACTATION DAY 20 1 HAIRLOSS ACTATION DAY 21 1 HAIRLOSS ACTATION DAY 21 P SCHEDULED EUTHANASIA	SESTATION DAY 6 P INCREASED SENSITIVITY TO TOUCH SESTATION DAY 8 P INCREASED SENSITIVITY TO TOUCH SESTATION DAY 9 P INCREASED SENSITIVITY TO TOUCH	DAY 10 P INCREASED SENSITIVITY TO DAY 10 P INCREASED SENSITIVE TO DAY 10 P INCREAS	DAY 13 P INCREASED SENSITIVITY TO	DAY 2 P INCREASED SENSITIVITY TO PAY 2 P INCREASED SENSITIVE P P P P INCREASED P P P P INCREASED P P P P P P P P P P P P P P P P P P P	DAY 4 P INCREASED SENSITIVITY TO YOUR ACTION OF THE PROPERTY O	DAY 5 F J DAY 8 P J	ACTATION DAY 9 P CONVULSIONS ACTATION DAY 9 P FOUND DEAD		1 1 1	STUDY DAY 8 1 HATRLOSS STUDY DAY 15 1 HATRLOSS	DAY 0 1 1	DAY 1 1 1	GESTATION DAY 1 P DARK MATERIAL AROUND EYE(S)	DAY 3 1
A ONE-GENER INDIVID		CATEGORY		ACTIVITY G ACTIVITY G ACTIVITY G		,		ACTIVITY L		POST- DOSE OBS L DEAD	E	. 01			BODY G		
3472. 3 INC.		GROUP	10 MG/KG/DAY	20 MG/KG/DAY							20 MG/KG/DAY	20 MG/KG/DAY					
10. : ERA,																	
SLI STUDY NO.: CLI ENT: NI PERA,		ANI MAL NO.	243 F	177 F							198 F	205 F					

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

12																											
PAGE																											
APPENDIX D A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	DAY GRADE OBSERVATIONS	GESTATION DAY 4 1 HAIRLOSS GESTATION DAY 5 1 HAIRLOSS	DAY 6 1 1	DAY 7 1]	DAY 8 1	GESTATION DAY 9 1 HAIRLOSS	DAY 11 1	DAY 11 P	DAY 12 1	DAY 13 1 1	DAY 14 1 1	DAY 15 1	DAY 16 1	DAY 17 I	GESTATION DAY 10 1 MAINLOSS	DAY 20 1 1	DAY 21 1 1	DAY 0 1 1	DAY 1 1]	DAY 2 1 1	DAY 3 1 1	DAY 4 1	DAY 5 1 1	LACTATION DAY 6 I HAIRLOSS	DAY / I	DAY 9 1 1
A 0N		CATEGORY	BODY	BODY	BODY	BODY	BODY	BODY	EYES	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY
3472. 3 INC.		GROUP	20 MG/KG/DAY																								
SLI STUDY NO.: CLIENT: NIPERA,		ANIMAL NO.	205 F 20																								

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

13			
PAGE			
APPENDIX D A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSI TI VE FINDINGS)	DAY GRADE OBSERVATIONS	LACTATION DAY 10 1 HAI RLOSS LACTATION DAY 11 1 HAI RLOSS LACTATION DAY 13 1 HAI RLOSS LACTATION DAY 14 1 HAI RLOSS LACTATION DAY 14 1 HAI RLOSS LACTATION DAY 16 1 HAI RLOSS LACTATION DAY 18 1 HAI RLOSS LACTATION DAY 18 1 HAI RLOSS LACTATION DAY 20 1 HAI RLOSS LACTATION DAY 21 P SCHEDULED EUTHANASIA STUDY DAY 31 P SCHEDULED EUTHANASIA STUDY DAY 31 HAI RLOSS GESTATION DAY 31 HAI RLOSS GESTATION DAY 4 1 HAI RLOSS GESTATION DAY 4 1 HAI RLOSS GESTATION DAY 5 1 HAI RLOSS GESTATION DAY 6 1 HAI RLOSS GESTATION DAY 6 1 HAI RLOSS GESTATION DAY 7 1 HAI RLOSS
A ONE-C		CATEGORY	BODY BODY BODY BODY BODY BODY BODY BODY
3472.3 INC.		GROUP	20 MG/KG/DAY 20 MG/KG/DAY 20 MG/KG/DAY 20 MG/KG/DAY
SLI STUDY NO.: CLI ENT: NI PERA,		ANIMAL NO.	200 2008 2108 239 7 8

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

14	1																									
PAGE																										
X D RANGE-FINDING STUDY IN RATS VIE HEXAHYDRATE CLINICAL OBSERVATIONS	I NDI NGS)	GRADE OBSERVATIONS	1 HAIRLOSS 1 HAIRLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HALRLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	P EYE(S) PALE IN COLOR	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI BLOSS	1 HAI RLOSS	1 HAI RLOSS 1 HAI RLOSS	THE THE PART OF TH						
APPENDIX D ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	DAY	GESTATION DAY 10 GESTATION DAY 11	GESTATION DAY 12 GESTATION DAY 13	DAY	DAY	DAY	GESTATION DAY 17	DAY	DAY	_	LACTATION DAY 0			DAY	LACTATION DAY 4	DAY	DAY	DAY	DAY	DAY 1	DAY	DAY	DAY	LACTATION DAY 14 LACTATION DAY 15	•
A		CATEGORY	AY BODY BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	FYFS	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY BODY	1
3472. 3 , INC.		GROUP	20 MG/KG/DAY																							
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	239 F																							

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

PAGE 15																					
(D AANGE-FINDING STUDY IN RATS TE HEXAHYDRATE CLINICAL OBSERVATIONS	NDI NGS)	GRADE OBSERVATIONS	1 HAIRLOSS 1 HAIRLOSS P DARK MATERIAL AROUND NOSE	1 HAIRLOSS 1 HAIRLOSS 1 HAIPPOSS	1 HAI RLOSS	P SCHEDULED EUTHANASIA P MALALI GNMENT	P MALALI GNMENT D MAT AT I CHARGET	P MALALI GNMENT	P MALALI GNMENT	P MALALI GNMENT	P MALALI GNMENT	P MALALI GNMENT P MATALI GNMENT	P MALALI GNMENT	P SCHEDULED EUTHANASIA	1 HAI RLOSS	1 HAI RLOSS 1 HAI RI OSS	P SCAB(S) - LEFT FORELIMB	S	1 HAI RLOSS	I HAI KLOSS	1 HAI RLOSS 1 HAI RLOSS
APPENDIX D NE- GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	DAY	DAY DAY DAY	LACTATION DAY 18 LACTATION DAY 19 1 ACTATION DAY 30	DAY	GESTATION DAY	GESTATION DAY 5	DAY	DAY	GESTATION DAY 10	DAY 1	GESTATION DAY 12 GESTATION DAY 13	DAY 1	LACTATION DAY 21	DAY	STUDY DAY 8 STIMY DAY 15	DAY 1	DAY		DAY	GESTATION DAY 3 GESTATION DAY 4
A ON		CATEGORY	BODY BODY NOSE/MOUTH	BODY BODY BODY	BODY	DEAD NOSE/MOUTH	NOSE/MOUTH	NOSE/MOUTH	NOSE/MOUTH	NOSE/MOUTH	NOSE/MOUTH	NOSE/MOUTH NOSE/MOUTH	NOSE/MOUTH	DEAD	BODY	BODY	BODY	BODY	BODY	BODY	BODY
3472. 3 INC.		GROUP	20 MG/KG/DAY			20 MG/KG/DAY									20 MG/KG/DAY						
SLI STUDY NO.: CLIENT: NIPERA,		ANIMAL NO.	239 F 2			241 F 2									242 F 2						

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

	;		
16			
PAGE			
APPENDIX D NE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	DAY GRADE OBSERVATIONS	GESTATION DAY 5 1 HAIRLOSS GESTATION DAY 6 1 HAIRLOSS GESTATION DAY 8 1 HAIRLOSS GESTATION DAY 8 1 HAIRLOSS GESTATION DAY 9 1 HAIRLOSS GESTATION DAY 10 1 HAIRLOSS GESTATION DAY 11 1 HAIRLOSS GESTATION DAY 13 1 HAIRLOSS GESTATION DAY 14 1 HAIRLOSS GESTATION DAY 15 1 HAIRLOSS GESTATION DAY 19 1 HAIRLOSS GESTATION DAY 19 1 HAIRLOSS GESTATION DAY 10 1 HAIRLOSS GESTATION DAY 10 1 HAIRLOSS GESTATION DAY 10 1 HAIRLOSS LACTATION DAY 21 1 HAIRLOSS LACTATION DAY 4 1 HAIRLOSS LACTATION DAY 4 1 HAIRLOSS LACTATION DAY 4 1 HAIRLOSS LACTATION DAY 6 1 HAIRLOSS LACTATION DAY 6 1 HAIRLOSS </td
A ONI		CATEGORY	800Y 800Y 800Y 800Y 800Y 800Y 800Y 800Y
3472. 3 INC.		GROUP	20 MG/KG/DAY
SLI STUDY NO.: CLIENT: NIPERA,		ANIMAL NO.	242 F

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

		: :																	
17																			
PAGE																			
APPENDIX D A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	ı i ndi ngs)	GRADE OBSERVATIONS	1 HAI RLOSS 1 HAI RLOSS 1 HAI RLOSS 1 HAI RLOSS	1 HATRLOSS 1 HATRI OSS	1 HATRLOSS 1 HATRLOSS	1 HAI RLOSS	1 HAI RLOSS	P SCHEDULED EUTHANASIA P SCHEDIII ED EITHANASIA		P SCHEDULED EUTHANASIA B SCHEDUITED EITERAMSIA	P DARK MATERIAL AROUND NOSE	P DARK MATERIAL AROUND NOSE B SCARCS ABOUND MOTTH	P SCAB(S) - AROUND MOUTH	P SCHEDULED EUTHANASIA P FEW FECES		P SWELLING - ABDOMINAL MAMMARY(IES) P SWELLING - ABDOMINAL MAMMARY(IES)	EUTHANASI A	1 HAI RLOSS	1 HAIRLOSS 1 HAIRLOSS
APPENDIX D ENERATION REPRODUCTION RANGE-FINDING S WITH NICKEL SULFATE HEXAHYDRATE IVIDUAL FO SURVIVAL AND CLINICAL OBSE	(POSI TI VE FINDI NGS)	DAY	LACTATION DAY 11 LACTATION DAY 12 LACTATION DAY 13 LACTATION DAY 14	DAY	DAY	DAY	DAY	LACTATION DAY 21	DAY	LACTATION DAY 21	DAY	GESTATION DAY 2	DAY	GESTATION DAY 21	DAY	LACTATION DAY 20	DAY	GESTATION DAY 12	DAY
A ONE-GI		CATEGORY	BODY BODY BODY BODY	BODY BODY	BODY BODY	BODY	BODY	DEAD	DEAD	DEAD	NOSE/MOUTH	NOSE/MOUTH	NOSE/MOUTH	DEAD EXCRETA/EMESIS	BODY	BODY	DEAD	BODY	BODY
3472.3 ,, INC.		GROUP	20 MG/KG/DAY					30 MC/KG/DAV	30 MG/KG/DAY	30 MG/KG/DAY	30 MG/KG/DAY			30 MG/KG/DAY				30 MG/KG/DAY	
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	242 F					ЭОО В	, II,	207 F	ч [т ,			222 F				230 F	

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

18	,		
PAGE			
Y IN RATS TONS		I ONS	EUTHANASI A EUTHANASI A
APPENDIX D I ON REPRODUCTI ON RANGE- FINDING STUDY IN WITH NICKEL SULFATE HEXAHYDRATE L FO SURVIVAL AND CLINICAL OBSERVATIONS	3S)	GRADE OBSERVATIONS	HAI RLOSS SCHEDULED E SCCHEDULED E
APPENDIX D UCTION RANGE. IL SULFATE HEY VAL AND CLINI	(POSITIVE FINDINGS)	.	
APPEI ODUCTI (KEL SUI	[V IT IS		DAY 16 DAY 17 DAY 18 DAY 18 DAY 18 DAY 19 DAY 20 DAY 20 DAY 20 DAY 21 DAY 3 3 DAY 4 4 DAY 10 DAY 11 DAY 12 DAY 14 DAY 17 DAY 18 DAY 21
APPENDIX D E-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(PC	DAY	GESTATION DAY GESTATION DAY GESTATION DAY GESTATION DAY GESTATION DAY GESTATION DAY CESTATION DAY LACTATION DAY
A ONE-GEN INDIV			
A		CATEGORY	BODY BODY BODY BODY BODY BODY BODY BODY
3472. 3 INC.		GROUP	30 MG/KG/DAY
NO. : I PERA,		NO.	Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε
SLI STUDY NO.: CLIENT: NIPERA		ANIMAL NO.	230

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

19																										
PAGE																										
APPENDIX D A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	DAY GRADE OBSERVATIONS	STUDY DAY 16 2 URINE STAIN I ACTATION DAY 21 P SCHEDII ED FITHANASIA	DAY 1 HAI RLOSS	STUDY DAY 8 1 HATRLOSS STUDY DAY 15 1 HATRLOSS	TON DAY 0 1	DAY 1 1]	DAY 2 1 1	DAY 3 1	DAY 4 1	GESTATION DAY 5 1 HAIRLOSS	DAY 7 1 1	DAY 8 1 1	DAY 9 1	DAY 10 1 1	GESTATION DAY 12 1 HAIRLOSS GESTATION DAY 12 1 HAIRLOSS	DAY 13 1	DAY 14 1 1	DAY 15 1 1	DAY 16	GESTATION DAY 17 I HAIRLOSS	DAY 10 1	DAY 20 1 1	DAY 21 1 1		
A ONE		CATEGORY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY	RODY	BODY	BODY	
3472. 3 INC.		GROUP	50 MG/KG/DAY	50 MG/KG/DAY																						
SLI STUDY NO.: CLIENT: NIPERA,		ANIMAL NO.	194 F 5(199 F 50																						

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

	;	: ;	' '
20			
PAGE			
APPENDIX D A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	GRADE OBSERVATIONS	1 HAI RLOSS 2 URI RLOSS 1 HAI RLOSS 1 HAI RLOSS 2 URI NE STAIN 4 SCHEDULED EUTHANASI A 5 CHEDULED EUTHANASI A 6 SCHEDULED EUTHANASI A 7 SCHEDULED EUTHANASI A 8 SCHEDULED EUTHANASI A
APPENDIX D APPENDIX D SUE-GENERATION REPRODUCTION RAN WITH NICKEL SULFATE INDIVIDUAL FO SURVIVAL AND CL.	(POSI TI VE	DAY	LACTATION DAY 1 LACTATION DAY 2 LACTATION DAY 3 LACTATION DAY 4 LACTATION DAY 4 LACTATION DAY 5 LACTATION DAY 7 LACTATION DAY 7 LACTATION DAY 10 LACTATION DAY 11 LACTATION DAY 11 LACTATION DAY 12 LACTATION DAY 13 LACTATION DAY 14 LACTATION DAY 15 LACTATION DAY 16 LACTATION DAY 17 LACTATION DAY 17 LACTATION DAY 18 LACTATION DAY 11 LACTATION DAY 12 LACTATION DAY 21 STUDY DAY 354 H GESTATION DAY 17
A (CATEGORY	BODY BODY BODY BODY BODY BODY BODY BODY
3472. 3 INC.		GROUP	50 MG/KG/DAY
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	202 215 F F 55 226 F 55 232 F 55 532 F 55

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

21			
PAGE			
APPENDIX D A ONE- GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	GRADE OBSERVATIONS	P SCAB(S) - AROUND MOUTH P SCHEDULED EUTHANASIA I FECAL STAIN P SKIN PALE IN COLOR - ALL EXTREMITIES P FEW FECES I FECAL STAIN I URINE STAIN I URINE STAIN I URINE STAIN P SKIN PALE IN COLOR - ALL EXTREMITIES P DARK MATERIAL - FORELIMB(S) P EYE(S) PALE IN COLOR P DARK MATERIAL - FORELIMB(S) P SALIVATION
APPE NERATI ON REPRODUCTI WITH NICKEL SU VI DUAL FO SURVI VAL	VIT ISOA)	DAY	GESTATI ON DAY 18 GESTATI ON DAY 19 GESTATI ON DAY 20 GESTATI ON DAY 22 GESTATI ON DAY 22 LACTATI ON DAY 22 LACTATI ON DAY 22 LACTATI ON DAY 22 LACTATI ON DAY 21 LACTATI ON DAY 22 LACTATI ON DAY 23 LACTATI ON DAY 24 LACTATI ON D
A ONE-GE INDI [*]		CATEGORY	NOSE/MOUTH
3472. 3 INC.		GROUP	50 MG/KG/DAY 75 MG/KG/DAY 75 MG/KG/DAY 75 MG/KG/DAY
SLI STUDY NO.: CLIENT: NIPERA,		ANIMAL NO.	232 F 5C 197 F 75 210 F 75 213 F 75

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

Δ)																					
22																					
PAGE																					
APPENDIX D A ONE- GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	FI NDI NGS)	GRADE OBSERVATIONS	P HUNCHED POSTURE P DEHYDRATION P SCHEDIILED EITTHANASIA	1 URINE STAIN P DARK MATERIAL AROUND NOSE	F SCHEDULED EUTHANASIA P SCHEDULED EUTHANASIA 1 HAIRLOSS	1 HAI RLOSS 1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS	1 HAI RLOSS P SOFT STOOLS	P SCHEDULED EUTHANASIA	- FACIAL	- FACIAL	F SCAB(S) - FACIAL AREA P SCAR(S) - FACIAI ARFA	- FACIAL	1 HAI RLOSS		P SCAB(S) - FACIAL AREA	1 HAI KLOSS	1 HAI RLOSS
APPENDIX D A ONE- GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSITIVE FINDINGS)	Y DAY	LACTATION DAY 2 LACTATION DAY 2 LACTATION DAY 2	STUDY DAY GESTATION DAY			GESTATION DAY	GESTATION DAY 1		DAY	GESTATION DAY 5 /FMFSTS GESTATION DAY 22	LACTATION DAY	_	GESTATION DAY 1	GESTATION DAY 2	. —	DAY	DAY		GESTATION DAY 6	DAY
		CATEGORY		BODY NOSE/MOUTH			BODY	BODY	BODY	BODY	BODY EXCRETA/EM			BODY	BODY	BODY	BODY	BODY	BODY	BODY	BODY
3472. 3 , INC.		GROUP	75 MG/KG/DAY	75 MG/KG/DAY	75 MG/KG/DAY 75 MG/KG/DAY								75 MG/KG/DAY								
SLI STUDY NO.: CLIENT: NIPERA,		ANIMAL NO.	213 F	220 F	228 F 7	ı							244 F								

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

23								!
PAGE								
APPENDIX D A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO SURVIVAL AND CLINICAL OBSERVATIONS	(POSI TI VE FINDINGS)	DAY GRADE OBSERVATIONS	GESTATION DAY 9 1 HAIRLOSS LACTATION DAY 1 P REDDISH VAGINAL DISCHARGE	DAY 21 P S DAY 0 P S	ACTATION DAY 0 P EYE(S) PALE IN COLOR ALL EXTREMITIES	1 1 P	DAY 1 P S	ACTATION DAY 1 P SCHEDULED EUTHANASIA
A ONE-GENERATI W INDIVIDUAL		CATEGORY	OBS	DEAD LACT PARTURITION OBS LACT	DBS 1	OBS 1	_	_ ;
3472.3 INC.		GROUP CA	244 F 75 MG/KG/DAY BC	DI F 75 MG/KG/DAY PA		P.	ğ	D]
SLI STUDY NO.: CLIENT: NIPERA,		ANIMAL NO.	244 F	245 F				

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

SLI Study No. 3472.3

APPENDIX E

Individual F0 Body Weight Data

CLI ENT: NI PERA, INC.	RA, INC.		•	WITH NIC	WITH NICKEL SULFATE HEXAHYDRATE	HEXAHYDRATE	WITH NICKEL SULFATE HEXAHYDRATE		
GROUP 1: 0 MG/KG/DAY	MG/KG/DA	Y	-	NDI VI DUAL FR	O BODY WEIGH	IDIVIDUAL FO BODY WEIGHT DATA (GRAMS)			
WEEK	1	2	3	4	5	9	7	FBW	
16996 M	420	455	466	475	496	510	506	531	
16997 M	440	445	461	470	484	494	487	505	
17010 M	466	477	499	502	507	527	517	527	
17018 M	522	545	269	573	582	601	613	633	
17032 M	495	516	542	547	563	578	582	580	
17033 M	486	208	533	543	562	572	579	587	
17035 M	486	490	520	538	260	UNSCHEDULE	ED EUTHANASI A	- MORI BUND	
17036 M	464	469	492	504	539	556	555	576	
MEAN	472	488	510	519	537	548	548	563	
S. D.	32.2	33. 5	37.6	36.8	36. 3	39. 1	46.3	44.0	
Z	∞	∞	8	8	∞	7	7	7	

PAGE 2												
	FBW	536	486	521	490	534	582	609	200	532	43.9	∞
UDY IN RATS	7	523	476	536	489	540	567	582	486	525	38.9	∞
APPENDIX E - GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO BODY WEIGHT DATA (GRANS)	9	538	200	535	498	541	558	576	506	532	28.3	∞
APPENDIX E DDUCTION RANG KEL SULFATE H DODY WEIGHT	5	530	490	510	485	520	544	260	490	516	27.5	∞
RATION REPRC WITH NICK NDIVIDUAL FC	4	520	479	493	472	513	525	548	477	503	27.3	∞
A ONE-GENE	3	514	468	486	464	498	515	531	465	493	25.9	∞
	2	481	451	481	452	476	497	502	457	475	19. 7	∞
3472.3 ERA, INC.	1	470	452	470	442	477	485	505	444	468	21.6	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 2: 10 MC/KG/DAY	WEEK	17009 M	17011 M	17015 M	17017 M	17020 M	17044 M	17046 M	17048 M	MEAN	S. D.	Z

PAGE 3													
	FBW	607	501	546	584	484	541	576	545	548	41.3	&	
TUDY IN RATS	7	584	490	544	572	471	541	562	527	536	39. 3	8	
APPENDIX E GENERATION REPRODUCTION RANCE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO BODY WEIGHT DATA (GRANS)	9	582	497	550	558	490	543	574	526	540	33.6	∞	
APPENDIX E ODUCTION RANG KEL SULFATE H O BODY WEIGHT	5	556	481	531	547	479	531	553	518	525	30. 2	∞	
ERATION REPR WITH NICI INDIVIDUAL F	4	548	467	206	523	462	520	530	503	507	29. 9	8	
A ONE-GEN	3	547	466	484	512	453	510	514	494	498	29. 9	8	
χ 3	2	531	440	470	501	428	493	497	475	479	33.6	&	DY WEI GHT.
D.: 3472.3 ERA, INC. MG/KG/DAY	1	515	453	460	482	423	468	493	445	467	29.0	&	FBW = FINAL BODY WEIGHT
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 3: 20 MG/KG/DAY	WEEK	16990 M	16999 M	17002 M	17008 M	17039 M	17040 M	17042 M	17045 M	MEAN	S. D.	N	NOTE: FBW =

DACE	+ TDU 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
			FBW	536	562	540	557	468	624	536	520	543	43.7	8
TIDY IN PATS	CIUNI NI IGO		7	530	548	520	532	462	604	523	502	528	40.2	∞ :
APPENDIX E RBATTON REPROPIECTION PANCE: ET NDING STITING IN PATS	WILLIAM IN CKEL SULFATE HEXALYBRATE MITTI PHA I CKEL SULFATE TATA (CDAME)	DAIR (GRAM)	9	541	538	515	527	478	290	515	502	526	32.9	∞
APPENDIX E	WITH NICKEL SULFATE HEXAHYDRATE	DODI WELGHI	5	526	530	502	520	467	260	503	499	513	27.4	&
PATTION PEPP	WITH NICK	NDI VI DORL FO	4	508	510	200	507	464	524	480	493	498	18.9	&
A ONE CENE		-	3	493	501	502	499	443	539	486	482	493	26.6	∞
			8	481	485	485	485	430	513	470	465	477	23.6	œ
3479 3	ERA, INC.) MG/KG/DAY		470	478	473	473	420	496	460	449	465	22.6	∞
St I STIID NO	CLI ENT: NI PERA,	GROUP 4: 30 MG/KG/DAY	WEEK	17001 M	17005 M	17007 M	17012 M	17013 M	17023 M	17041 M	17049 M	MEAN	S. D.	Z

PAGE 5												
	FBW	539	539	563	487	540	526	546	506	531	24.0	∞
UDY IN RATS		507	523	546	477	522	517	530	489	514	22.3	8
APPENDIX E GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO BODY WEIGHT DATA (GRANS)	9	541	529	544	487	521	517	529	503	521	19.1	∞
APPENDIX E DDUCTION RANG KEL SULFATE H D BODY WEIGHT		527	522	533	469	518	508	518	493	511	20.9	∞
RATI ON REPRC WI TH NI CH NDI VI DUAL FC	4	509	510	520	460	511	492	207	475	498	20.7	∞
A ONE-GENE	3	497	478	512	456	511	488	504	457	488	22. 4	∞
	8	478	482	495	452	510	472	486	454	479	19.6	∞
ERA, INC.	1	471	465	485	451	489	462	472	445	468	15.2	∞
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 5: 50 MC/KG/DAY	WEEK	17004 M	17024 M	17026 M	17028 M	17029 M	17034 M	17043 M	17047 M	MEAN	S. D.	N

PAGE 6													
		FBW	539	482	496	541	523	554	520	656	539	53.0	∞
UDY IN RATS		7	513	459	470	516	503	524	514	619	515	48.1	&
APPENDIX E GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO BODY WEIGHT DATA (GRANS)		9	523	484	486	539	517	206	532	609	525	39. 5	∞
APPENDIX E DUCTION RANG TEL SULFATE H DODY WEIGHT		5	504	493	482	525	491	208	509	595	513	35. 5	∞
RATION REPRC WITH NICK NDIVIDUAL FC		4	489	478	486	512	479	509	487	579	502	33. 4	∞
A ONE-GENE		3	475	463	477	511	474	497	502	574	497	35.3	8
		8	465	447	461	487	452	482	474	546	477	31.2	∞
).: 3472.3 IRA, INC.	MG/KG/DAY	-	454	443	431	476	460	483	473	531	469	30. 5	∞
SLI STUDY NO.: CLI ENT: NI PERA,	GROUP 6: 75 MG/KG/DAY	WEEK	17000 M	17014 M	17016 M	17019 M	17021 M	17022 M	17025 M	17027 M	MEAN	S. D.	N

PAGE 7													
		FBW											
DY IN RATS		7	! ! ! ! ! ! !										
APPENDIX E ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDIAL FO BODY WEIGHT DATA (GRAMS)		9											
APPENDIX E ERATION REPRODUCTION RANGE-FINDING STU WITH NICKEL SULFATE HEXAHYDRATE INDIVIDIAL FO RODY WEIGHT DATA (GRAMS)		5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
RATI ON REPROI WITH NICKI NDIVI DIJAI, FO		4				271					271	1	
A ONE- GENE	i	8	267	288	270	566	293	298	274	303	282	14.8	∞
		2	262	282	262	892	287	287	271	298	277	13.3	∞
.: 3472.3 RA, INC.	MG/KG/DAY	1	253	273	264	269	277	299	274	288	275	14.1	œ
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 1: 0	WEEK	192 F	196 F		219 F					MEAN	S. D.	N

FBW = FINAL BODY WEIGHT. BODY WEIGHTS FOR FEMALES WITH POSITIVE EVIDENCE OF MATING ARE PRESENTED IN APPENDIX G. STANDARD DEVIATION WAS NOT CALCULATED WHEN N < 2. NOTE:

DIX E IN RANGE- FINDING STUDY IN RATS FATE HEXAHYDRATE WEIGHT DATA (GRAMS)		5 6 7 FBW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
AP ONE- GENERATI ON REPRODUC WITH NI CKEL	INDIVIDUAL FU BU	3 4	278	268	568	249	287	280	260	298	277	17.7	∞
A (2	273									12.0 13	&
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.) MG/KG/DAY	1	267	263	300	257	284	276	258	286	274	15.3	∞
	GROUP 2: 10 MG/KG/DAY	WEEK	188 F	195 F	224 F	229 F	234 F	236 F	238 F	243 F	MEAN	S. D.	Z

NOTE: FBW = FINAL BODY WEIGHT. BODY WEIGHTS FOR FEMALES WITH POSITIVE EVIDENCE OF MATING ARE PRESENTED IN APPENDIX G.

ING STUDY IN RATS RATE (GRAMS)	7 FBW												BODY WEIGHTS FOR FEMALES WITH POSITIVE EVIDENCE OF MATING ARE PRESENTED IN APPENDIX G.
APPENDIX E APPENDIX E A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO BODY WEIGHT DATA (GRANS)	5												ES WITH POSITIVE EVID
A ONE- GENERATI ON RI WITH P I NDI VI DUAI	3 4	280	281	283	276	300	270	293	309	287	13.1	&	BODY WEIGHTS FOR FEMAI
2. 3 DAY	8	278	272	275	264	291	255	288	305	279	15.9	∞	FBW = FINAL BODY WEIGHT.
0.: 3472.3 ERA, INC. 0 MG/KG/DAY	-	279	270	275	264	283	268	279	290	276	8.5	∞	= FI NAL
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 3: 20 MG/KG/DAY	WEEK	177 F	198 F	205 F	208 F		239 F		242 F	MEAN	S. D.	Z	NOTE: FBW

APPENDIX E A ONE- GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO BODY WEIGHT DATA (GRAMS)	5 6 7 FBW												BODY WEIGHTS FOR FEMALES WITH POSITIVE EVIDENCE OF MATING ARE PRESENTED IN APPENDIX G.
APF A ONE-GENERATION REPRODUCT WITH NICKEL S INDIVIDUAL FO BOE	3 4	284	278	277	265	271	313	261	300	281	17.6	∞	ODY WEIGHTS FOR FEMALES WITH
	8	286	277	281	260	271	308	260	286	279	15.7	œ	!
D.: 3472.3 ERA, INC.	1	268	282	280	255	569	304	255	286	275	16.6	œ	FBW = FI NAL BODY WEI GHT.
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. CROUP 4: 30 MC/CC/DAY	WEEK	200 F	204 F	207 F	212 F		222 F		240 F	MEAN	S. D.	Z	NOTE: FBW =

CLI ENT: NI PERA,	ERA, INC.		٠	WI TH NI CK	WITH NICKEL SULFATE HEXAHYDRATE	IEXAHYDRATE	WITH NICKEL SULFATE HEXAHYDRATE		•	
GROUP 5: 50 MG/KG/DAY	O MG/KG/DA!	λ.	-	INDIVIDUAL FU BODY WEIGHI DAIA (GRAMS)	body weighi	DAIA (GKAM	6			
WEEK	1	2	3	4	5	9	7		FBW	
194 F	280	271	275							
199 F	267	267	271							
202 E	263	265	278							
215 F	295	295	299							
216 F	284	278	287							
226 F	254	246	242							
227 F	262	566	274	279	274	277	279	277	283	
232 F	867	300	299							
MEAN	275	274	278	279	274	277	279	277	283	
S. D.	16.3	17.4	18.3	;	:	1	;	1	;	
Z	8	∞	∞	1	1	1	1	1	1	

FBW = FINAL BODY WEIGHT. BODY WEIGHTS FOR FEMALES WITH POSITIVE EVIDENCE OF MATING ARE PRESENTED IN APPENDIX G. STANDARD DEVIATION WAS NOT CALCULATED WHEN N < 2.

PAGE 12													
	FBW												
UDY IN RATS	7												
APPENDIX E E-GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVI DUAL FO BODY WEIGHT DATA (GRANS)	9												
APPENDIX E TON REPRODUCTION RANGE-FINDING S WITH NICKEL SULFATE HEXAHYDRATE VIDUAL FO BODY WEIGHT DATA (GRAI	īc												
ERATION REPRO WITH NICI INDIVIDUAL FO	4												
A ONE-GEN	8	268	289	269	295	286	269	270	311	282	15.8	∞	
m >	2	263	289	255	292	287	264	265	300	277	16.9	∞	
5.: 3472.3 ERA, INC.	1	271	281	260	284	278	257	265	290	273	11.9	∞	
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	WEEK	197 F	210 F	213 F		228 F				MEAN	S. D.	N	

NOTE: FBW = FINAL BODY WEIGHT. BODY WEIGHTS FOR FEMALES WITH POSITIVE EVIDENCE OF MATING ARE PRESENTED IN APPENDIX G.

APPENDIX F

Individual F0 Body Weight Gain Data

APPENDIX F NE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS PAGE 1		GRAMS)		7 TO 8	25	18	10	20	- 2	8	NASIA - MORIBUND	21	14	9.4	t
E- FI NDI NG	IEXAHYDRATE	AIN DATA (6 TO 7	-4	<i>L</i> -	- 10	12	4	7	UNSCHEDULED EUTHANASIA	- 1	0	7.9	٢
APPENDLX F DUCTION RANGI	WITH NICKEL SULFATE HEXAHYDRATE	ODY WEIGHT (5 TO 6	14	10	20	19	15	10	UNSCHEI	17	15	4.0	1
RATI ON REPRO	WI TH NI CK	INDIVIDUAL FO BODY WEIGHT GAIN DATA (GRAMS)		4 T0 5	21	14	5	6	16	19	22	35	18	9. 1	œ
A ONE-GENEI		[NI		3 TO 4	6	6	3	4	7.	10	18	12	6	4.9	a
				2 TO 3	11	16	22	24	56	25	30	23	22	6.0	α
3472.3	RA, INC.		MG/KG/DAY	1 T0 2	35	5	11	23	21	22	4	2	16	11.2	a
SLI STUDY NO.	CLI ENT: NI PERA, INC.		GROUP 1: 0 MG/KG/DAY	WEEK	16996 M	16997 M	17010 M	17018 M	17032 M	17033 M	17035 M	17036 M	MEAN	S. D.	Z

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		A ONE-GENE	RATION REPRO WITH NICK	ONE- GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NI CKEL SULFATE HEXHYDRATE FINDIAL PLANT MATCHER CATAL MATCHER	E-FINDING ST EXAHYDRATE	TUDY IN RATS	PAGE	83
GROUP 2: 10 MG/KG/DAY		IND	IVIDUAL FU B	INDIVIDUAL FU BUDI WEIGHI GAIN DAIA (GRAND)	AIN DAIA (GR	(AND)		
1	2 TO 3	3 T0 4	4 TO 5	5 TO 6	6 TO 7	7 TO 8		
1	33	9	10	· · · · · · · · · · · · · · · · · · ·	- 15	13		
	17	11	11	10	- 24	10		
	5	7	17	25	1	- 15		
	12	∞	13	13	6 -	1		
	22	15	7	21	- 1	9 -		
	18	10	19	14	6	15		
	53	17	12	16	9	27		
	∞	12	13	16	- 20	14		
	18	111	13	15	- 7	7		
	8.6	3.8	3.8	5.6	12.2	13.3		
	∞	∞	∞	∞	∞	∞		

PAGE 3													
UDY IN RATS	AIMS)	7 TO 8	23	11	2	12	13	0	14	18	12	7.6	•
E- FI NDI NG ST EXAHYDRATE	AIN DATA (GR	6 TO 7	2	2 -	9 -	14	- 19	- 2	- 12	1	- 4	6.6	c
TON REPRODUCTION RANGE-FINDING SWITH NICKEL SULFATE HEXAHYDRATE	DY WEIGHT GA	5 TO 6	26	16	19	11	11	12	21	∞	16	6. 1	•
ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE	INDIVIDUAL FO BODY WEIGHI GAIN DAIA (GKANS)	4 TO 5	8	14	25	24	17	11	23	15	17	6.3	c
A ONE-GENER	INDI	3 TO 4	1	1	22	11	6	10	16	6	10	7.0	c
		2 TO 3	16	56	14	11	25	17	17	19	18	5. 1	c
.: 3472.3 RA, INC.	MG/KG/DAY	1 TO 2	16	- 13	10	19	2	25	4	30	12	13.6	c
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 3: 20 MG/KG/DAY	WEEK	16990 M	16999 M	17002 M	17008 M	17039 M	17040 M	17042 M	17045 M	MEAN	S. D.	14

TC Y	A ONE-GENEKATION KEPRODUCTION KANGE-FINDING SIODY IN KAIS WITH NICKEL SULFATE HEXAHYDRATE	GRAMS)		7 TO 8	9	14	20	25	9	20	13	18	15	6.8	0
ON THE DE	re- FI NDI NG S IEXAHYDRATE	AIN DATA ((6 TO 7	-111	10	5	5	- 16	14	∞	0	8	10.4	œ
APPENDIA F	JUN KEPKUDUCIIUN KANGE-FINDING WITH NICKEL SULFATE HEXAHYDRATE	ODY WEIGHT G		5 TO 6	15	∞	13	7	11	30	12	က	12	8. 1	œ
יסממתם זיס זייר אי	KATION KEPKU WITH NICKI	INDIVIDUAL FO BODY WEIGHT GAIN DATA (GRAMS)		4 T0 5	18	20	2	13	3	36	23	9	15	11.6	œ
TIME OF	A ONE-GENE	IND		3 T0 4	15	6	- 2	∞	21	- 15	9-	11	гC	11.9	œ
				2 TO 3	12	16	17	14	13	56	16	17	16	4.3	œ
0 0 0 0	.: 3472.3 RA, INC.		MG/KG/DAY	1 T0 2	111	7	12	12	10	17	10	16	12	3.3	œ
ON WAILINGS I IS	SLI SIUDY NO.: 3472.3 CLIENT: NIPERA, INC.		GROUP 4: 30 MG/KG/DAY	WEEK	17001 M	17005 M	17007 M	17012 M	17013 M		17041 M	17049 M	MEAN	S. D.	Z

OI CTIIN NO	9479 3		A ONE CEME	APPENDLA F A ONE CENEDATION DEDDONICTION DANCE EINDING STUDY IN DATS	APPENDIX F	F FINDING CT	TINV IN DATE	DACH
CLIENT: NIPERA, INC.	RA, INC.		A ONE-GENE	MITH NICK	WITH NICKEL SULFATE HEXAHYDRATE	EXAHYDRATE	ODI IN MAIS	
			ONI	INDIVIDUAL FO BODY WEIGHT GAIN DATA (GRAMS)	ODY WEIGHT G	AIN DATA (GR	(AMS)	
GROUP 5: 50 MG/KG/DAY	MG/KG/DAY							
WEEK	1 TO 2	2 TO 3	3 T0 4	4 TO 5	5 TO 6	6 TO 7	7 T0 8	
17004 M	7	19	12	18	14		32	
17024 M	17	- 4	32	12	7	9 -	16	
17026 M	10	17	∞	13	11	2	17	
17028 M	-	4	4	6	18	- 10	10	
17029 M	21	-	0	7	လ	-	18	
17034 M	10	16	4	16	6	0	6	
17043 M	14	18	က	11	11	-1	16	
17047 M	6	က	18	18	10	- 14	17	
MEAN	11	6	10	13	10	8-	17	
S. D.	6. 2	9. 2	10.5	4.1	4.5	12.2	7.0	
N	∞	∞	∞	∞	∞	∞	∞	

RATS PAGE 6		8 0	9	3	9	2	0	0	9	7	4	6	
IG STUDY IN	(GRAMS)	7 TO 8	2	2	26	2	2	Ö		Š	24	8.9	
F ANGE- FI NDI N E HEXAHYDRA	r gain data	6 TO 7	-10	- 25	- 16	- 23	- 14	18	- 18	10	- 10	15.6	•
APPENDLA F TON REPRODUCTION RANGE-FINDING ; WITH NICKEL SULFATE HEXAHYDRATE	BODY WEIGHT	5 TO 6	19	6 -	4	14	56	- 2	23	14	11	12.4	•
APPENDIX F NE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE	INDIVIDUAL FO BODY WEIGHT GAIN DATA (GRAMS)	4 TO 5	15	15	- 4	13	12	- 1	22	16	111	8.9	•
A ONE-GEN	NI	3 TO 4	14	15	6	1	5	12	- 15	Z	9	9. 7	(
		2 TO 3	10	16	16	24	22	15	28	28	20	9.9	(
).: 3472.3 RA, INC.	MG/KG/DAY	1 T0 2	11	4	30	11	8-	- 1	-	15	∞	11.7	•
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.	GROUP 6: 75 MG/KG/DAY	WEEK	17000 M	17014 M	17016 M	17019 M	17021 M	17022 M	17025 M	17027 M	MEAN	S. D.	;

SEL STUDI NO.: CLI ENT: NI PERA,	U.: 3472.3 ERA, INC.		A ONE-GENE	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE	II ON REPRODUCTI ON RANGE-FINDING S' WITH NI CKEL SULFATE HEXAHYDRATE	E-FINDING SI EXAHYDRATE	rudy in Rats	ď	PAGE 7
, direct			I ND	INDIVIDUAL FO BODY WEIGHT GAIN DATA (GRAMS)	DY WEIGHT G.	AIN DATA (GR	RAMS)		
GROUP I: O MG/KG/DAY	MG/KG/DAY								
	1 T0 2	2 TO 3	3 T0 4	4 T0 5	5 TO 6	6 TO 7	7 TO 8		
192 F	6	5			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1
196 F	6	9							
	- 2	∞							
	- 1	- 2	5						
	10	9							
231 F	- 12	11							
	-3	က							
	10	5							
MEAN	3	τC	5						
S. D.	8. 2	3.8	:						
Z	œ	œ	_						

BODY WEIGHT GAINS FOR FEMALES WITH POSITIVE EVIDENCE OF MATING ARE PRESENTED IN APPENDIX H. STANDARD DEVIATION WAS NOT CALCULATED WHEN N < 2. NOTE:

CLI ENT: NI P.	CLI ENT: NI PERA, INC.		WITH NICKEL SULFATE HEXAHYDRATE	WITH NICKE	WITH NICKEL SULFATE HEXAHYDRATE	EXAHYDRATE			ļ
GROUP 2: 10 MG/KG/DAY	0 MG/KG/DAY	ζ.	I ND	INDIVIDUAL FO BODY WEIGHT GAIN DATA (GRAMS)	JDY WEIGHT G	AIN DATA (GI	RAMS)		
WEEK	1 TO 2	2 TO 3	3 T0 4	4 T0 5	5 TO 6	6 TO 7	7 TO 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
188 F	9	5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
195 F	6	- 4							
224 F	- 11	10							
229 F	- 7	- 1							
234 F	- 10	13							
236 F	3	1							
238 F	∞	9-							
243 F	-1	13							
MEAN	0	4							
S. D.	8. 1	7.5							
Z	∞	∞							

CLI ENT: NI PEKA,	RA, INC.			WI TH NI CKE	WITH NICKEL SULFATE HEXAHYDRATE	EXAHYDRATE	Î		
GROUP 3: 20 MG/KG/DAY	MG/KG/DAY		IONI	INDIVIDUAL FO BODY WEIGHT GAIN DATA (GRAMS)	ODY WEIGHT G.	AIN DATA (GI	RAMS)		
WEEK	1 T0 2	2 TO 3	3 T0 4	4 TO 5	5 TO 6	6 TO 7	7 TO 8		
	. 1	2	! ! ! ! ! ! ! !	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! ! ! ! ! !		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	2	6							
	0	∞							
208 F	0	12							
	8	6							
	- 13	15							
	6	5							
	15	4							
MEAN	က	8							
S. D.	8. 4	4.3							
Z	8	∞							

CLI ENT: NI PI	CLI ENT: NI PERA, INC.		WITH NICKEL SULFATE HEXAHYDRATE	WITH NICKE	WITH NICKEL SULFATE HEXAHYDRATE	EXAHYDRATE			I war
GROUP 4: 30 MG/KG/DAY	O MG/KG/DAY	~.	I ND	INDIVIDUAL FO BODY WEIGHT GAIN DATA (GRAMS)	JDY WEIGHT G	AIN DATA (GI	RAMS)		
WEEK	1 TO 2	2 TO 3	3 T0 4	4 T0 5	5 TO 6	6 TO 7	7 TO 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1
200 F	18			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
204 F	- 5	1							
207 F	-	- 4							
212 F	5	5							
	2	0							
222 F	4	5							
	5	1							
240 F	0	14							
MEAN	4	က							
S. D.	9.9	5.6							
Z	∞	∞							

	CLI ENI: NI PEKA, INC.		14111	MITH NICA	WITH NICKEL SULFATE HEXAHYDRATE	EXAHYDRATE		:
GROUP 5: 50	GROUP 5: 50 MG/KG/DAY		I NDI	VIDUAL FO B	JDY WEIGHT G	INDIVIDUAL FO BODY WEIGHT GAIN DATA (GRAMS)	(AMS)	
WEEK	1 T0 2	2 TO 3	3 T0 4	4 TO 5	5 TO 6	6 TO 7	7 TO 8	
194 F	6-	4						1 1 1 1 1
199 F	0	4						
202 F	2	13						
215 F	0	4						
216 F	9 -	6						
226 F	8-	- 4						
227 F	4	∞	5	- 5	က	2	- 2	
232 F	8	- 1						
MEAN	- 2	22	5	. 5	8	8	- 2	
S. D.	5.0	5.4	:	;	:	;	1	
Z	∞	∞	-	1	1	1	1	

BODY WEIGHT GAINS FOR FEMALES WITH POSITIVE EVIDENCE OF MATING ARE PRESENTED IN APPENDIX H. STANDARD DEVIATION WAS NOT CALCULATED WHEN N < 2. NOTE:

CLI ENT: NI PERA,	ERA, INC.			WITH NICKI	WITH TO DON' WEIGHT CATAL PARTY	EXAHYDRATE	A ONE-GENERALION KEFRODUCLION RANGE-FINDING SIQUY IN RAIS WITH NI CREE SULFATE HEXAHYDRATH INDIVIDUAL FOR DORNY WITHOUT CAIN DARK CRAMES	LAGE	E 12
GROUP 6: 75 MG/KG/DAY	5 MG/KG/DAY		I ND.	INDIVIDUAL FU BODI WEIGHI GAIN DAIA (GRANS)	JUY WEIGHI G.	AIN DAIA (G	KAMD)		
WEEK	1 TO 2	2 TO 3	3 T0 4	4 T0 5	5 TO 6	6 TO 7	7 TO 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! !
197 F		5			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	
210 F	∞	0							
	- 5	14							
	∞	က							
	6	- 1							
	7	57							
	0	5							
	10	11							
MEAN	4	22							
S. D.	7.0	5. 1							
Z	∞	∞							

APPENDIX G

Individual F0 Gestation Body Weight Data

PAGE 1												
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GESTATION BODY WEIGHT DATA (GRAMS)	20	412	431 414	362	415	447	412	434	416	25.2	8	CHIATION OF MEAN
ONE- GENERA I NDI VI D	14	326	$\frac{330}{319}$	306	332	369	337	360	335	20.7	∞	DED IN CAL
A	7	300	307 294	284	309	335	312	339	310	18.9	∞	NOT INCLU
: 3472.3 A, INC. G/KG/DAY	PREGNANCY STATUS DAY 0	271	279 266	271	295	311	278	302	284	16.5	∞	G = GRAVID NG = NONGRAVID: NOT INCITIDED IN CALCILIATION OF MEAN
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 1: 0 MG/KG/DAY	PREGN	!	196 G 206 G						MEAN	S. D.	Z	G = GRAVID

347 1NG G/KG/ S I	APPENDIX G 72.3 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GESTATION BODY WEIGHT DATA (GRAMS)	DAY 0 7 14 20	256 299 321 362 279 297 317 389	314 342	296 327	326 346	313 335	293 314	327 364		22.7 13.7 17.0 24.5	8 8 8
4 💆 [4:5]	SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 2: 10 MG/KG/DAY	PREGNANCY STATUS DAY	. 6	. 83	~	~	~	N	ς.	2	22	

SLI STUDY NO.: CLIENT: NIPERA,	/ NO.: II PERA,	3472.3 1, INC.		A	ONE- GENER	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE	PAGE	4
GROUP 4: 30 MG/KG/DAY	30 MG/	'KG/DAY			I NDI VI	INDIVIDUAL FO GESTATION BODY WEIGHT DATA (GRAMS)		
		· · · · · · · · · · · · · · · · · · ·						!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
	STATUS	DAY	0	7	14	20		
200		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	286	318	341	411		! ! !
204	ۍ		290	321	332			
207	ڻ		287	315	342			
212	ڻ		272	312	328	425		
217	ڻ		275	297	323			
222	ڻ		317	350	356			
230	ŗ		252	284	309			
240	ტ		293	320	350			
MEAN			284	315	335			
S. D.			18.8	19. 2	15.3	27.9		
Z			œ	∞	∞	∞		
G = GRAVI	DN Q	= NONG	RAVI D:	NOT INCLU	DED IN CA	G = GRAVID NG = NONGRAVID: NOT INCLUDED IN CALCULATION OF MFAN		

APPENDIX G

A ONE- GENERATI ON REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL TO CESTAME ON DODY WETCHT DATA (CDAME)	N DODI WELGHI DAIA (GRAWD)												N.
ATI ON REPRO WI TH NI CK	DUAL FO GES	20	397	379	419	403	384	370	429	397	21.5	7	LCULATION 0
ONE- GENER	INDIA	14	337	318	351	342	312	302	377	334	25.7	7	UDED IN CA
A		7	312	296	313	321	296	291	342	310	17.8	7	NOT INCL
D.: 3472.3 ERA, INC.) MG/KG/DAY	PREGNANCY STATUS DAY 0	268	7 255	7 270	, 299	792 267	7 248	310	274	22.6	7	NG = NONGRAVID; NOT INCLUDED IN CALCULATION OF MEAN
SLI STUDY NO.: CLIENT: NIPERA,	GROUP 5: 50 MG/KG/DAY	PREC	194 6	199 6	202	215 6	216 G	226 6	232 6	MEAN	S. D.	N	G = GRAVID

75 MG/KG/DAY **RECNANCY STATUS DAY 0 7 14 G 277 287 283 G 285 325 355 G 262 305 318 G 298 319 326 G 298 343 374 G 289 290 308 G 251 288 329 G 251 288 329 G 251 288 329
277 287 283 285 325 355 262 305 318 298 319 326 298 343 374 269 290 308 251 288 329 308 341 358
G 277 287 283 G 285 325 355 G 288 319 326 G 289 343 374 G 289 290 308 G 251 288 329 G 280 312 331
G 277 287 283 G 285 325 355 G 298 319 326 G 289 343 374 G 251 288 329 G 251 288 329 G 308 341 358
G 285 325 355 G 262 305 318 G 298 319 326 G 289 343 374 G 251 288 329 G 251 288 329 G 308 341 358
G 262 305 318 G 298 319 326 G 289 343 374 G 269 290 308 G 251 288 329 G 308 341 358
G 298 319 326 G 289 343 374 G 269 290 308 G 251 288 329 G 308 341 358
G 289 343 374 G 269 290 308 G 251 288 329 G 308 341 358
G 269 290 308 G 251 288 329 G 308 341 358
G 251 288 329 G 308 341 358 280 312 331
G 308 341 358 280 312 331
280 312 331
100
S. D. 18.9 23.2 29.7 34.2
8 8

APPENDIX H

Individual F0 Gestation Body Weight Gain Data

SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.	NO.: PERA,	3472. 3 INC.	A	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE
GROUP 1: 0 MG/KG/DAY	0 MG/K	G/DAY		INDIVIDUAL FO GESTATION BODY WEIGHT GAIN DATA (GRANS)
PR	PREGNANCY	Y	1	26 77
מ ו	TAIUS	DAI 0- /	/- 14	14-20
192	G	29	26	98
196	5	28	23	101
506	ŗ	28	25	95
219	ŋ	13	22	56
221	5	14	23	83
231	ŗ	24	34	78
233	ŗ	34	25	75
237	ტ	37	21	74
MEAN		26	25	81
S. D.		8.6	4. 1	13.9
Z		∞	∞	∞
G = GRAVID	 NG :	= NONGRAVI D:	NOT INCLI	G = GRAVID NG = NONGRAVID: NOT INCLUDED IN CALCULATION OF MEAN

APPENDI X H

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	NO.: PERA,	3472. 3 INC.	A	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE WITH WICKEL SULFATE HEXAHYDRATE WITH STATEMENT OF THE STATEMENT OF
GROUP 2: 10 MG/KG/DAY	10 MG/	KG/DAY		INDIVIDUAL FU GESTATION BODY WEIGHI GAIN DAIA (GRAMS)
[] [] [] [] [] [] [] [] [] []	SEGNANC STATUS	PREGNANCY STATUS DAY 0- 7	7-14	14-20
188	5	43	:	41
195	ی ن	25	20	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
224	ڻ	44	28	79
229	ڻ	51	31	75
234	ۍ	34	20	61
236	ۍ	24	22	91
238	ۍ	38	21	95
243	ŗ	14	37	99
MEAN		34	25	89
S. D.		12.3	6.2	14.8
N		8	8	∞
G = GRAVII		= NONGBAVI D:	NOT INCI	G = GRAVID NG = NONCRAVID: NOT INCIIDED IN CALCILLATION OF MEAN

					TAINTALL TO CHICHART ON DONY HER CITY CAIN DAWN (CHARLE)	
GROUP 3: 20 MG/KG/DAY	0 MG/1	(G/DAY			INDIVIDUAL FU GESTATION BUDI WELGHI GAIN DATA (GRAND)	
PRE	PREGNANCY					1 1 1 1 1 1 1
ST	STATUS	DAY 0- 7	. 7	7-14	14-20	
177			31	27	9.2	! ! ! !
198	ŗ	.,	35	29	84	
202	ŗ	•4	31	22	73	
208	G	.,	31	27	65	
218	G	.,	36	12	09	
239	ŗ	.,	35	29	72	
241	5	.,,	30	17	45	
242	ۍ	• •	22	25	99	
MEAN		.,	30	24	89	
S. D.		5.	5.8	6. 1	11.7	
N			∞	∞	∞	

SLI STUDY NO.: CLI ENT: NI PERA,	NO.: PERA,	3472. 3 INC.	A	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE TO STORM TO STUDY IN RATS
GROUP 4: 30 MG/KG/DAY	30 MG/i	KG/DAY		INDIVIDUAL FO GESTATION BODY WEIGHT GAIN DATA (GRANS)
PRJ	PREGNANCY	λ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Š	TATUS	DAY 0- 7	7-14	14-20
200		32	23	70
204	ڻ	31	11	19
207	ڻ	28	27	81
212	ტ	40	16	97
217	J.	22	26	83
222	ŗ	33	9	75
230	5	32	25	80
240	ŗ	27	30	98
MEAN		31	21	74
S. D.		5.2	8.5	23. 5
Z		∞	∞	∞
G = GRAVID	NG.	= NONGRAVI D:	NOT INCLU	NG = NONGRAVI D: NOT INCLUDED IN CALCULATI ON OF MEAN

	, (1207)	INC.			WITH NICKEL SULFATE HEXAHYDRATE	
GROUP 5: 50 MG/KG/DAY	50 MG/1	KG/DAY			INDIVIDUAL FO GESTATION BODY WEIGHT GAIN DATA (GRAMS)	
id 57	PREGNANCY STATUS DAY 0- 7	Y DAY	0- 7	7-14	4 14-20	
194	9	!	44	25		
199	ŗ		41	22		
202	ŗ		43	38	89	
215	5		22	21		
216	ŗ		53	16		
226	5		43	11		
232	ტ		32	35	52	
MEAN			36	24	63	
S. D.			8.6	9. 7	6.7	
Z			7	7	7	

					TAINTINI TO CHOMPANTON DONY MICTORN DATA CATA DATA CONTRIBUTION
GROUP 6: 75 MG/KG/DAY	75 MG/	KG/DAY		•	INDIVIDUAL FU GESTATION BODY WEIGHT GAIN DATA (GRANS)
	PREGNANCY	Y			
S	TATUS	STATUS DAY 0- 7	0- 7	7-14	14 14-20
197		1 1 1 1 1	10		14 59
210	ტ		40	30	98
213	ტ		43	13	
220	ტ		21	7	7 95
228	ტ		54	31	1 64
235	ۍ		21	18	
244	ტ		37	41	1 91
245	ტ		33	17	7 39
MEAN			32	19	9 71
S. D.		1	14.2	14.5	18.8
Z			∞	∞	8

APPENDI X H

APPENDIX I

Individual F0 Lactation Body Weight Data

	PAGE 1																
	NE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE	INDIVIDUAL FO LACTATION BODY WEIGHT DATA (GRANS)		601	17	318	336	345	316	362	368	366	348	345	20. 4	∞	
APPENDIX I	RODUCTION R CKEL SULFAT	CTATION BOD			14	338	335	357	325	347	355	371	346	347	14.4	∞	
	RATION REPI WITH NIC	UAL FO LAC		-	10	318	339	325	333	330	348	358	332	335	12.8	∞	
	ONE- GENER	I NDI VI D			,	306	328	316	318	321	336	334	339	325	11.4	∞	
	Α 0					4 :	299	313	316	596	324	331	334	329	318	14. 4	∞
	က		7	-	٠ :	286	303	305	275	277	322	321	327	302	20.7	∞	
	3472. INC.		3/KG/DAY)	DAI												
	SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.		GROUP 1: 0 MG/KG/DAY	ANIMAL	NO.	192	196	506	219	221	231	233	237	MEAN	S. D.	N	

ο		: : : : :										
PAGE		! !										
APPENDIX I NE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO LACTATION BODY WEIGHT DATA (GRAMS)												
DIX I N RANGE-FI FATE HEXAH BODY WEIGH	21	324	331	342		327	343	303	345	331	14.8	7
APPENDIX I PRODUCTION RAN I CKEL SULFATE I ACTATION BODY V	14	325	349	363		329	360	305	366	342	23.2	7
SATION RE WITH N	10	324	332	353	ER LOSS	328	359	293	344	333	22.0	7
A ONE-GENEI INDIVII	7	317	318	328	OTAL LITTI	326	343	286	335	322	18.3	7
A	4	317 309 31	309	335	VI ZED - T	323	323	288	341	318	17.9	7
	-	317	287	309	EUTHAL	309	307	287	329	306	15.2	7
3472.3 , INC. G/KG/DAY	DAY	! ! !										
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 2: 10 MC/KG/DAY	ANI MAL NO.	188	195	224	229	234	236	238	243	MEAN	S. D.	N

PAGE 3													
APPENDIX I NE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDIAL FO LACTATION RODY WEIGHT DATA (GRAMS)		21		353	328	332	324	349	341	353	340	12.1	7
APPEN PRODUCTIO I CKEL SUL		14	DEAD		331	353	335	351	350	336	345	10.4	7
SATION REI WITH N		10	FOUND D	345	316	323	323	328	335	323	328	9.6	7
ONE- GENEI		<i>L</i>	344	326	303	311	316	318	325	318	320	12. 1	∞
A		4	331	323	301	308	292	309	317	333	314	14.4	∞
ဇ	Λλ	1	312	303	276	299	248	294	313	312	295	22.5	∞
: 3472. A, INC.	MG/KG/D/	DAY											
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 3: 20 MG/KG/DAY	ANI MAL NO.	177	198	202	208	218	239	241	242	MEAN	S. D.	N

PAGE 4											
APPENDIX I A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO LACTATION BODY WEIGHT DATA (GRAMS)	21	345	355	342	319	345	355	365	347	14. 5	7
APPENDIX I SODUCTION RAN SKEL SULFATE STATION BODY	14	370	365	364	305	350	358	367	354	22.7	7
ATI ON REPF WI TH NI C UAL FO LAC	10	347	323	338	304	345	336	344	334	15.4	7
ONE- GENER INDI VI D	7	336	320	326	288	321	319	341	322	17.0	7
A	4	332	310	329	291	324	304	350	320	19. 7	7
X 3	1	308	314	306	286	332	285	326	308	18.0	7
: 3472. A, INC. WG/KG/DA	DAY	: : : : : :									
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 4: 30 MG/KG/DAY	ANI MAL NO.	200	207	212	217	222	230	240	MEAN	S. D.	Z

PAGE 5												
APPENDIX I NE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE TABLET FOR A CONTROL FOR THE STANKEN	ODI WEIGHI DAIA (GRAMD)	21	324	338	334	362	321	306	349	333	18.6	7
APPENDIX I RODUCTI ON RAN CKEL SULFATE	CIAILUN DO	14	310	346	352	346	353	327	373	344	20.2	7
ATI ON REP	UAL FU LA	10	306	330	334	337	329	313	340	327	12.7	7
ONE- GENER		7	295	321	333	332	330	277	338	318	23.0	7
A		4	293	308	318	337	303	275	329	309	21.3	7
ဗ	¥	-	310	303	309	322	289	262	304	300	19.4	7
3472.3 A, INC.	IG/KG/DA	DAY	 									
SLI STUDY NO.: CLIENT: NIPERA,	GROUP 5: 50 MG/KG/DAY	ANIMAL NO.	194	199	202	215	216	226	232	MEAN	S. D.	Z

PAGE 6											
APPENDIX I NE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO LACTATION BODY WEIGHT DATA (GRAMS)	21	290	999	350	348	319	340		330	22.7	9
APPENDIX I CODUCTION RAN KEL SULFATE	14	300			357	337	342	$\overline{}$	340	21.5	9
ATI ON REPE WITH NIC	10	294	FOTAL LITTER	328	338	322	336	TOTAL LITTER	327	17.9	9
ONE- GENER INDI VI D	7	285	, - E	325	322	315	325		317	16. 1	9
A	4	273	320 EUTHAN	318	312	297	323	EUTHAN	308	20.1	9
e	-	255	260 260	320	318	274	308	323	296	28.1	∞
: 3472. A, INC.	DAY										
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.	ANIMAL NO.	197	213	220	228	235	244	245	MEAN	S. D.	N

APPENDIX J

Individual F0 Lactation Body Weight Gain Data

PAGE 1											
APPENDIX J A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO LACTATION BODY WEIGHT GAIN DATA (GRANS)	10-14 14-21	20 - 20 - 4 1	32 - 12	6- 8-	17 15	7 13	13 5	14 2	-2	12.9 12.1	8
NERATI O WI DUAL FO	1	1 1 1 1 1 1									
ONE- GE I NDI VI	7-10	12 12	6	15	6	12	24	- 7	11	8.6	∞
A	4- 7	7 7 15	0	22	- 3	5	0	10	7	8. 5	∞
ဇာ	1- 4	13	11	21	47	6	13	3	16	13.7	∞
3472. (INC. /KG/DAY	DAY	 									
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 1: 0 MC/KG/DAY	ANI MAL NO.	192	206	219	221	231	233	237	MEAN	S. D.	N

PAGE 2														
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE	INDIVIDUAL FO LACTATION BODY WEIGHT GAIN DATA (GRANS)		14-21	1	-18	- 21		-2	- 17	-2	- 21	- 12	9.5	7
ATION RE WITH N	L FO LAC	1	7-10 10-14		17	10	AL LITTER LOSS	1	1	12	22	6	8.5	7
ONE- GENER	I NDI VI DUA	1	7-10	7	14	25	TOTAL LITT	2	16	7	6	111	7.6	7
Α		1	4- 7		6	- 7	HANI ZED - T	က	20	- 2	9 -	4	9.6	7
က	:		1- 4 4- 7	. &	22	56	EUTHAN	14	16	1	12	12	11.8	7
3472.		G/KG/DA	DAY											
SLI STUDY NO.: 3472.3 CLIENT: NIPERA. INC.		GROUP 2: 10 MG/KG/DAY	ANIMAL NO.	188	195	224	229	234	236	238	243	MEAN	S. D.	Z

PAGE 3												
APPENDIX J ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO LACTATION BODY WEIGHT GAIN DATA (GRAMS)	14-21		-4	-3	- 21	- 11	-2	6-	17	- 5	11.6	7
TI ON REPR WI TH NI C FO LACTA	10-14	DEAD	12	15	30	12	23	15	13	17	8.9	7
NE- GENERA NDI VI DUAL	7-10	FOUND DEAD	19	13	12	7	10	10	5	111	4.5	7
A ONI	4- 7	13	3	2	က	24	6	∞	- 15	9	11. 1	∞
ж 3	1- 4	19	20	25	6	44	15	4	21	20	12.0	∞
: 3472.3 tA, INC. MG/KG/DAY	DAY	1 1 1 1 1 1										
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 3: 20 MG/KG/DAY	ANI MAL NO.	177	198	205	208	218	239	241	242	MEAN	S. D.	Z

PAGE 4													
ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NICKEL STAFFARD OF THE STAFF OF TH	AILUN BUDI WELGHI GAIN DAIA (GRAND)	14-21		- 25	- 10	- 22	14	- 2	-3	-2	- 80 - 10 - 10 - 10 - 10 - 10 - 10 - 10	13.2	
ATTON REP WITH NI	L FU LACI	10-14	- ;	23	42	56	-	5	22	23	20	13. 7	7
A ONE-GENER	I NDI VI DUA	7-10		11	လ	12	16	24	17	က	12	7.6	7
A		4- 7		4	10	- 3	- 3	- 3	15	6 -	8	8. 5	7
8	XI	1- 4		24	- 4	23	5	% -	19	24	12	13.9	7
3472.3 INC.	AG/KG/DA	DAY											
SLI STUDY NO.: CLI ENT: NI PERA,	GROUP 4: 30 MG/KG/DAY	ANIMAL		200	207	212	217	222	230	240	MEAN	S. D.	Z

īΟ		 	 									
PAGE		1 1 1 1 1 1 1	1 1 1 1 1 1 1									
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO LACTATION BODY WEIGHT GAIN DATA (GRAMS)		10-14 14-21	4 14	16 -8	18 - 18	9 16	24 - 32	14 - 21		17 - 10	9.6 18.8	7 7
NE- GENERA' NDI VI DUAL		7-10	11	6	-	5	- 1	36	2	6	12.7	7
A 0.		4- 7	2	13	15	- 5	27	2	6	6	10.6	7
8	¥	1- 4	-17	2	6	15	14	13	25	6	13.1	7
: 3472.3 A, INC.	MG/KG/DA	DAY	! ! ! ! !									
SLI STUDY NO.: CLIENT: NIPERA,	GROUP 5: 50 MG/KG/DAY	ANI MAL NO.	194	199	202	215	216	226	232	MEAN	S. D.	N

PAGE 6					
APPENDIX J A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO LACTATION BODY WEIGHT GAIN DATA (GRAMS)	14-21	- 10 - 25	7 - 9 - 9 - 18	2-2	-10 11.3 6
ATION REP WITH NI L FO LACT	10-14	9 6 16 16	EK LUSS 15 19 15	_	13 5. 5 6
ONE- GENER I NDI VI DUA	7-10	16 16 17 1 1777	101AL LIII 3 16 7	11 TOTAL LITTER	$\begin{array}{c} 10 \\ 5.1 \\ 6 \end{array}$
∢	1-4 4-7		HANI ZED - 1 7 10 18		6.2 6
× 3	1- 4	18 18	EU I HA - 2 - 6	23 15 EUTHAI	11 12.0 6
3472.: ,, INC. KG/KG/DAY	DAY	1 1 1 1 1 1			
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 6: 75 MG/KG/DAY	ANI MAL NO.	210	213 220 228	244 245	MEAN S. D. N

APPENDIX K

Individual F0 Food Consumption Data (grams/animal/day)

PAGE 1													
APPENDIX K ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)		7 TO 8	28	25	23	34	26	28	- MORI BUND	30	27	3.6	7
APPENDIX K I ON REPRODUCTION RANGE-FINDING S WITH NICKEL SULFATE HEXAHYDRATE O FOOD CONSUMPTION DATA (GRAMS/)		7 0T 8	27	25	23	33	27	28	EUTHANASI A	59	27	3.2	7
RATI ON REPROI WITH NICKE L FO FOOD CON		5 TO 6	29	56	28	33	29	30	UNSCHEDULED	32	30	2.3	7
A ONE-GENEI INDIVIDUAI		4 T0 5	27	25	28	а	30	28	30	31	28	2.0	7
		2 T0 3		22	56	32	27	56	56	26	26	2.9	8
: 3472.3 tA, INC.	AG/KG/DAY	1 T0 2	23	22	24	29	27	24	25	23	25	2.3	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 1: 0 1	WEEK 1 TO 2	16996 М	16997 M	17010 M		17032 M			17036 M	MEAN	S. D.	N

NOTE: FOOD CONSUMPTION WAS NOT MEASURED DURING MATING (WEEK 3 TO 4). a ANIMAL WAS MATING.

APPENDIX K A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	5 5 TO 6 6 TO 7 7 TO 8	23	23	27	27 25 24	25	31	28	23	28 26 25	1.8 2.6 4.0	
A ONE-C	2 TO 3 4 TO 3	! ! ! ! ! !			23 26					24 26	2.3 1.7	8
SLI STUDY NO : 3472.3 CLIENT: NI PERA, INC. GROUP 2: 10 MG/KG/DAY	WEEK 1 TO 2	17009 M 21	M	M	17 M 23	M	M	M	M	23	S. D. 2. 5	

PAGE 3													
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO FOOD CONSUMPTION DATA (GRANS/ANIMAL/DAY)	7 TO 8	29	25	26	30	27	27	29	29	28	1.8	∞	
APPENDIX K TON REPRODUCTION RANGE-FINDING S WITH NICKEL SULFATE HEXAHYDRATE O FOOD CONSUMPTION DATA (GRAMS)	6 TO 7	29	25	28	29	25	28	29	27	27	1.8	∞	DURING MATING (WEEK 3 TO 4).
ATI ON REPRO WI TH NI CK FO FOOD CC	5 TO 6	31	26	32	29	30	29	31	53	30	1.9	∞	MATING (WE
A ONE-GENERA I NDI VI DUAL	4 TO 5	28	25	32	29	30	28	31	29	29	2.0	∞	
	2 TO 3	25	24	25	25	27	26	25	56	25	0.9	∞	WAS NOT M
.: 3472.3 RA, INC. MG/KG/DAY	1 T0 2	24	19	24	56	22	26	24	24	24	2.3	∞	CONSUMPTION
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 3: 20 MG/KG/DAY	WEEK	М 16990	16999 M	17002 M	17008 M	17039 M	17040 M	17042 M	17045 M	MEAN	S. D.	N	NOTE: FOOD CONSUMPTION WAS NOT MEASURED

PAGE 4														
APPENDIX K ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS	WITH NICKEL SULFATE HEXAHYDRATE		7 T0 8	24	30	28	31	24	34	28	27	28	3.4	&
APPENDIX K UCTION RANGE-	L SULFATE HEX		6 TO 7	24	27	27	27	23	33	27	24	27	3. 1	8
RATI ON REPROD	WITH NICKE		5 TO 6	30	25	56	28	56	35	28	25	28	3.3	∞
A ONE-GENEI	I NDI VI DIIAI		4 T0 5	29	25	56	29	56	33	29	25	28	2.9	&
			2 TO 3	22	23	25	24	22	53	25	23	24	2.3	∞
.: 3472.3	RA, INC.	MG/KG/DAY	1 T0 2	20	56	25	24	22	27	25	24	24	2.3	∞
SLI STUDY NO	CLI ENT: NI PERA, INC.	GROUP 4: 30 MG/KG/DAY	WEEK	17001 M	17005 M	17007 M	17012 M	17013 M	17023 M	17041 M	17049 M	MEAN	S. D.	Z

NOTE: FOOD CONSUMPTION WAS NOT MEASURED DURING MATING (WEEK 3 TO 4).

PAGE 5												
FINDING STUDY IN RATS KAHYDRATE A (GRANS/ANIMAL/DAY)	7 TO 8	29	28	28	25	31	27	28	28	28	1.9	∞
APPENDIX K A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	6 TO 7	23	25	27	24	29	27	27	27	26	1.8	œ
RATI ON REPROI WITH NI CKI L FO FOOD COI	5 TO 6	29	27	28	27	53	27	27	29	28	1.0	∞
A ONE-GENE I NDI VI DUA	4 TO 5	29	27	56	56	31	28	В	28	28	1.7	7
	2 TO 3	24	24	25	24	27	24	56	23	25	1.3	∞
E.: 3472.3 E.A. INC.	1 TO 2	23	56	56	23	25	25	56	22	24	1.3	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	WEEK			17026 M						MEAN	S. D.	Z

NOTE: FOOD CONSUMPTION WAS NOT MEASURED DURING MATING (WEEK 3 TO 4). a ANIMAL WAS MATING.

	PAGE 6														
	GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE	A (GRAMS/ANIMAL/DAY)		7 T0 8	31	26	27	28	33	33	27	36	30	3.6	∞
APPENDI X K	UCTION RANGE L SULFATE HE	SUMPTION DAT	1	6 TO 7	29	23	24	25	27	34	53	34	28	4.3	∞
	ATI ON REPROD WI TH NI CKE	FO FOOD CON	1	5 TO 6	32	23	24	53	31	18	31	31	28	5.0	∞
		I NDI VI DUAL	1	4 T0 5	30	27	24	28	58	27	30	33	29	2.8	∞
			1	2 TO 3	25	24	24	56	56	25	53	31	26	2.6	∞
	.: 3472.3 RA, INC.		MG/KG/DAY	1 T0 2	24	21	23	24	23	23	24	31	24	2.8	∞
	SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		GROUP 6: 75 MG/KG/DAY	WEEK	17000 M	17014 M	17016 M	17019 M	17021 M	17022 M	17025 M	17027 M	MEAN	S. D.	Z

NOTE: FOOD CONSUMPTION WAS NOT MEASURED DURING MATING (WEEK 3 TO 4).

PAGE 7													EVI DENCE OF
Y IN RATS AL/DAY													FOOD CONSUMPTION FOR FEMALES WITH POSITIVE EVIDENCE OF
APPENDIX K ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	7 TO 8												1
APPENDIX K 1 ON REPRODUCTION RANGE-FINDING S WITH NICKEL SULFATE HEXAHYDRATE O FOOD CONSUMPTION DATA (GRANS/)	6 TO 7	1 1 1 1 1 1 1 1											ED DURING MATING (WEEK 3 TO 4). L.
ENERATI ON REI WI TH NI DUAL FO FOOD	5 TO 6												RING MATING (
A ONE-G INDIVI	4 TO 5	1 1 1 1 1 1 1 1 1											r MEASURED DU
72. 3 C. DAY	2 2 TO 3	16	18	18	15	19	18	15	18	17	1.6	8	FOOD CONSUMPTION WAS NOT MEASURE MATING IS PRESENTED IN APPENDIX
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 1: 0 MG/KG/DAY	1 TO 2	192 F 15	96 F 18)6 F 17	219 F 15	21 F 19	31 F 17	33 F 16	37 F 19	17	1.6	8	FOOD CONSUM
SLI STU CLI ENT: GROUP 1	WEEK	16	16	3C	21	22	23	23	23	MEAN	S. D.	Z	NOTE:

SLI STUDY NO.: 3472	.: 3472.3 RA INC		A ONE-GENE	RATION REPROD WITH NICKE	APPENDIX K 1 ON REPRODUCTION RANGE-FINDING S WITH NICKEL SILLEATE HEXAHYDRATE	STUDY IN RATS	PAGE	∞
	141, 111C.		I NDI VI DUAL	FO FOOD CON	SUMPTION DAT	INDIVIDUAL FO FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)		
GROUP 2: 10 MG/KG/DAY	MG/KG/DAY							
WEEK	1 T0 2	2 TO 3	4 T0 5	5 TO 6	6 TO 7	7 T0 8	! ! ! !	! ! !
188 F	17	17		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! ! ! ! ! ! !		1	1 1 1 1
195 F	15	15						
	18	23						
229 F	14	16						
234 F	15	19						
	16	17						
	16	17						
243 F	19	20						
MEAN	16	18						
S. D.	1.5	2.7						
N	∞	∞						
NOTE: FOOD MATIN	CONSUMPTION G IS PRESEN	FOOD CONSUMPTION WAS NOT MEASURED MATING IS PRESENTED IN APPENDIX I		DURING MATING (WEEK 3 TO 4).	X 3 T0 4).	FOOD CONSUMPTION FOR FEMALES WITH POSITIVE EVIDENCE OF	ICE OF	1 1 1

PAGE 9													FOOD CONSUMPTION FOR FEMALES WITH POSITIVE EVIDENCE OF
APPENDIX K ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	7 TO 8												1
APPENDIX K TON REPRODUCTION RANGE-FINDING WITH NICKEL SULFATE HEXAHYDRATE O FOOD CONSUMPTION DATA (GRAMS/	6 TO 7												ED DURING MATING (WEEK 3 TO 4). L.
ERATI ON REPRO WITH NICI AL FO FOOD CO	5 TO 6												NG MATING (W
A ONE-GEN INDIVIDU	4 TO 5												EASURED DURI
λ 3	2 TO 3	16	16	18	18	19	19	18	19	18	1.1	œ	FOOD CONSUMPTION WAS NOT MEASURE MATING IS PRESENTED IN APPENDIX
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 3: 20 MG/KG/DAY	1 T0 2	15	16	18	16	17	18	18	19	17	1.3	&	D CONSUMPTION ING IS PRESI
SLI STUDY I CLIENT: NII GROUP 3: 2	WEEK	177 F	198 F	205 F	208 F	218 F	239 F	241 F	242 F	MEAN	S. D.	Z	NOTE: FOOI

SLI STUDY NO.: CLIENT: NIPERA,	.: 3472.3 RA, INC.		A ONE- GENE	SATI ON REPRO WITH NICK	APPENDIX K TON REPRODUCTION RANGE-FINDING S WITH NICKEL SULFATE HEXAHYDRATE WITH OFFICE SULFATE HEXAHYDRATE OF FOOD CONSTRAINT OF DAME A	APPENDIX K A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO FOOD CONSIMENTON DATA (CRARS ANIMALADAY)	PAGE	11
GROUP 5: 50 MG/KG/DAY	MG/KG/DAY		TOOT IA TON I	000101	NO THE THORN	(נוסק /קראון נוסק /קראוראון) עני		
WEEK	1 T0 2	2 TO 3	4 T0 5	5 TO 6	6 TO 7	7 TO 8	1	
194 F	16	17		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	111111111111111111111111111111111111111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1
199 F	16	17						
	18	19						
	18	18						
	18	18						
226 F	15	15						
227 F	16	16	В	17	16	18		
	20	20						
MEAN	17	17		17	16	18		
S. D.	1.4	1.6		1	1			
Z	œ	∞		1	1	1		
NOTE: FOOD CONSUMPTI MATING IS PRES A ANI MAL WAS MATING.	FOOD CONSUMPTION WAS NOT MEASURED MATING IS PRESENTED IN APPENDIX LAL WAS MATING.	WAS NOT ME		G MATING (WE	EK 3 TO 4).	DURING MATING (WEEK 3 TO 4). FOOD CONSUMPTION FOR FEMALES WITH POSITIVE EVIDENCE OF STANDARD DEVIATION WAS NOT CALCULATED WHEN N < 2.	POSITI VE EVIDENCE OF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PAGE 12			WITH POSITIVE EVIDENCE OF
APPENDIX K ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	7 T0 8		FOOD CONSUMPTION FOR FEMALES WITH POSITIVE EVIDENCE OF
APPENDIX K TON REPRODUCTION RANGE-FINDING S WITH NICKEL SULFATE HEXAHYDRATE O FOOD CONSUMPTION DATA (GRAMS/)	6 TO 7		ED DURING MATING (WEEK 3 TO 4). L.
A ONE-GENERATION I WITH INDIVIDUAL FO FO	4 TO 5 5 TO 6		SURED DURING MATING DIX L.
	2 TO 3	15 18 18 19 17 17 17 17 17 17 17	FOOD CONSUMPTION WAS NOT MEASURE MATING IS PRESENTED IN APPENDIX
J.: 3472.3 ERA, INC. MG/KG/DAY	1 TO 2	144 118 119 119 119 117 117 2.00	CONSUMPTION IS PRESE
SLI STUDY NO :: 3472.3 CLI ENT: NI PERA, INC. GROUP 6: 75 MG/KG/DAY	WEEK	197 F 210 F 213 F 220 F 228 F 235 F 244 F 245 F MEAN S. D.	

APPENDIX L

Individual F0 Gestation Food Consumption Data (grams/animal/day)

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	3472. 3 INC.	A	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE
GROUP 1: 0 MG/F	KG/DAY	I NDI VI	INDIVIDUAL FO GESTATION FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)
		1 1 1 1 1 1 1	
PREGNANCY STATUS DAY	DAY 0- 7	7-14	14-20
192 G	20	21	22
	22	21	25
	23	24	26
	17	18	20
	21	21	24
	23	26	26
	21	23	24
	25	25	23
MEAN	22	22	24
S. D.	2.4	2.6	2.1
N	∞	∞	∞
G = GRAVID NG	= NONGRAVID:	NOT INCLU	G = GRAVID NG = NONGRAVID: NOT INCLIDED IN CALCULATION OF MFAN

APPENDIX L

SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 2: 10 MG/KG/DAY PREGNANCY	TUDY NO.: T: NI PERA, 2: 10 MG/ PREGNANCY CTATHIS	3472. 3 INC. 'KG/DAY		A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GESTATION FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	E
/2 	1A1US	-		14- ZU	1 1 1 1 1 1 1
188	<u>ح</u>	22	25	24	
195	ۍ	20	21	22	
224	ۍ	25	24	23	
229	5	25	56	26	
234	5	58	25	23	
236	5	21	22	24	
238	ŗ	24	23	22	
243	ტ	24	56	24	
MEAN		23	24	24	
S. D.		2.1	1.9	1.3	
Z		∞	∞	∞	

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	3472. 3 INC.	A	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE WITH NICKEL SULFATE HEXAHYDRATE WITH NICKEL SULFATE HEXAHYDRATE WASHINGTON FOOD	က
GROUP 3: 20 MG,	/KG/DAY	I NDI VI	INDIVIDUAL FO GESTATION FOOD CONSUMPTION DATA (GRAND/ANIMAL/DAI)	
PREGNANCY STATUS DAY C	DAY 0- 7	7-14	14-20	1 1 1 1 1
177 G	22	21	24	
198 G	23	23	26	
	23	24	22	
	25	24	24	
	22	19	17	
	24	24	24	
	25	25	24	
242 G	23	23	22	
MEAN	23	23	23	
S. D.	1.2	2.0	2.7	
N	∞	∞	∞	
G = GRAVID NG	= NONGRAVI D	NOT INCIL	G = GRAVID NG = NONCRAVID: NOT INCIIDED IN CALCILIATION OF MFAN	

A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NAME AND	GESTATION FOOD CONSONE ILON DATA (GRAPA) ANTIPAEL DAL)												
ONE- GENE	DOM: TO	14-20	25	24	56	28	24	56	24	25	25	1.4	∞
A	INDIVI	7-14	25	24	24	27	24	17	23	25	24	2.9	∞
3472. 3 .NC.	KG/DAY	DAY 0- 7	25	22	23	56	22	56	21	22	23	2.0	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 4: 30 MG/KG/DAY	PREGNANCY STATUS	:		207 G					240 G	MEAN	S. D.	N

SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.).: 3 3RA, I	472. 3 NC.	А	A ONE-GENERATION REPRODUCTION REPRODUCTION REPRODUCTION REPRODUCTION REPROPULS STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE
			I NDI VI	INDIVIDUAL FO GESTATION FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)
GROUP 5: 50 MG/KG/DAY) MG/K	G/DAY		
PREGNANCY STATUS	ANCY	DAY 0- 7	7-14	4 14-20
194 G	 	25	28	25.5
199 G	, H	24	22	
202	۳.	56	29	
215 G	c =	21	22	23
216 G	۳,	21	20	
226 G	۳.	23	21	
232 6	c #s	27	27	
MEAN		24	24	
S. D.		2.3	3.7	1.3
Z		7	7	
G = GRAVID		NG = NONGRAVI D; NOT INCLUDI	NOT INCLU	ICLUDED IN CALCULATION OF MEAN

APPENDIX M

Individual F0 Lactation Food Consumption Data (grams/animal/day)

A ON	INDIVIDUAL FU LACIATION FUUD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	DAY 1- 4 4- 7 7-10	42 47 56		40	45	37 39 51	41	42	33	36 41 52	5.0 4.2 5.4	
3472. 3 INC.	3/DAY	DAY 1- 4	42	35	38	37	37	35	38	25	36	5.6	
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 1: 0 MG/KG/DAY	ANI MAL NO.	192	196	206	219	221	231	233	237	MEAN	S. D.	-

PAGE 2													
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE MATH FO I ACTATION FOOD CONSTANT OF DATA (CDARK ANIMAL ANAX)	THE CHANGE OF THE CONTROL OF THE CON	7 7-10	1 44	8 52	2 55	- TOTAL LITTER LOSS	0 53	1 57	7 46	7 54	2 52	0 4.8	7 7
=	•	4 4-		35	34 ,	EUTHANI ZEI	, , , ,	01	66	41 47		2 5.0	
3472. 3 , INC.	G/KG/DAY	DAY 1- 4 4- 7	16	(-)	(-)	I	(+)	4	S.V.	7	ц)	60.2	
SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC.	GROUP 2: 10 MG/KG/DAY	ANI MAL NO.	188	195	224	229	234	236	238	243	MEAN	S. D.	Z

PAGE 3												
APPENDLY M A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO LACTATION FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	4- 7 7-10	47 FOUND DEAD							34 43	43 51	8.2 6.1	8 7
3472. 3 INC. KG/DAY	4	37	38	31	33	37	34	20	31	33	5.8	8
SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC. GROUP 3: 20 MC/KC/DAY	ANIMAL DAY 1-	177	198	205	208	218	239	241	242	MEAN	S. D.	N

,	JE 4														
	APPENDLX M A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NDIVIDUAL FO LACTATION FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)														
	A ONE- C	VI DUAL		1 1 1 1 1 1	7-10	56	4	59	41	52	58	46	5	8.9	
	A INDIV			4- 7	47	39	48	31	35	44	37	40	6. 4	7	
,	က		Λ		DAY 1- 4	39	27	44	22	25	37	34	33	8. 1	7
1	: 3472. A, INC.		MG/KG/D		DAY										
	SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.		GROUP 4: 30 MG/KG/DAY	ANIWAL	NO.	200	207	212	217	222	230	240	MEAN	S. D.	Z

9		
PAGE		
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO LACTATION FOOD CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	7-10	44 59 43 52 56 53 54 53 - TOTAL LITTER LOSS 51 6. 4 6. 4
IND	4- 7	44 36 59 51 UTHANI ZED - 58 22 43 8 48 40 42 UTHANI ZED - 66 6 6
. 3	DAY 1- 4 4- 7	24 39 EUTH/ 22 38 30 30 EUTH/ 7.4
3472 INC. /KG/DA	DAY	
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 6: 75 MG/KG/DAY	ANI MAL NO.	197 210 213 220 228 235 244 245 MEAN S. D.

APPENDIX N

Individual F0 Water Consumption Data (grams/animal/day)

PAGE 1 WEEK 1 TO 2	3/DAY	85 39 30 42 41 30 37	43 17. 8 8
WEEK	6 75 MG/KG/DAY	17000= 17014= 17016= 17019= 17021= 17022= 17025= 17027=	
		328 328 328 328 44 44	44 18. 2 8
Š	50 MG/KG/DAY	17024= 17024= 17026= 17028= 17029= 17034= 17043=	
IN RAT	/DAY	34 31 31 29 39 30 30	34 6. 1 8
DING STUDY DRATE GRAMS/ANIM	- 4 30 MG/KG/DAY	17001= 17005= 17007= 17012= 17013= 17023= 17049=	
N NGE- FI N HEXAHY DATA (/DAY	27 27 27 27 27 48 48	37 7. 9 8
APPENDIX N DUCTION RAN EL SULFATE I ONSUMPTION I	M A L E 3 20 MG/KG/DAY	16990= 16999= 17002= 17008= 17039= 17040= 17042= 17045=	
N REPRO TH NICK WATER C	/DAY	28 28 33 31 27 37 38 38	32 4. 5 8
APPENDIX N ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	2 10 MG/KG/DAY	17009= 17011= 17015= 17017= 17020= 17044= 17046= 17048=	
A ONE INDI	/DAY	33 34 34 49 27 31 33	35 6. 5 8
	1 0 MG/KG/DAY	16996= 16997= 17010= 17018= 17032= 17033= 17035= 17036=	
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP: LEVEL:		MEAN S. D. N

	1 1 1	 	
PAGE 2 (2 TO 3		4 5 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 3 3 3	38 5.3 7
WEEK	6 75 MG/KG/DAY	17000= 17014= 17016= 17019= 17021= 17022= 17022= 17025= 17027=	
	/DAY	44 47 33 34 31 31 31 51	45 18.8 8
50	50 MG/KG/DAY	17004= 17024= 17026= 17028= 17029= 17034= 17043= 17047=	
IN RATS AL/DAY)	/DAY	38 31 33 31 31 32 33	33 5.0 8
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	4 30 MG/KG/DAY	17001= 17005= 17007= 17012= 17013= 17023= 17041= 17049=	
N NGE- FI N: HEXAHY: DATA (/DAY	43 42 27 31 29 49 50 33	38 9. 1 8
APPENDIX N 1 ON REPRODUCTION RANGE-FINDING S WITH NICKEL SULFATE HEXAHYDRATE O WATER CONSUMPTION DATA (GRAMS)	M A L E 3 20 MG/KG/DAY	16990= 16999= 17002= 17008= 17039= 17040= 17042= 17045=	
N REPROT TH NICK		36 24 37 31 30 36 37 34	33 4. 5 8
ONE- GENERATI O WI INDI VI DUAL FO	2 10 MG/KG/DAY	17009= 17011= 170115= 17017= 17020= 17044= 17046= 17048=	
A ONE INDI		41 35 37 60 60 28 33 33 33	38 9.6 8
	1 0 MG/KG/DAY	16996= 16997= 17010= 17018= 17032= 17033= 17033= 17035=	
3472. 3 I NC.	نن		AN D.
SLI STUDY NO.: (CLIENT: NIPERA, 1	GROUP: LEVEL:		MEAN S. D. N

NOTE: WATER CONSUMPTION WAS NOT MEASURED DURING MATING (WEEK 3 TO 4). a ELIMINATED DUE TO LEAKING WATER BOTTLE.

PAGE 3 WEEK 4 TO 5	6 75 MG/KG/DAY	17000= 123 17014= 46 17016= 32 17019= 36 17021= 44 17022= 34 17025= 47 17027= 40	50 29. 8 8
	G/DAY	33 25 8 33 25 8 32 2 8 33 2 2 8	45 12. 4 6
S	50 MG/KG/DAY	17004= 17024= 17026= 17028= 17029= 17034= 17043= 17047=	
IN RAT AL/DAY)	/DAY	26 29 45 29 42 41 29	35 7. 4 8
DING STUDY DRATE GRAMS/ANI M	30 MG/KG/DAY	17001= 17005= 17007= 17012= 17013= 17023= 17041= 17049=	
N NGE-FIN HEXAHY DATA ((/DAY	33 33 44 34 34	39 7. 5 8
APPENDIX N DUCTION RANG EL SULFATE I ONSUMPTION I	M A L E 3 20 MG/KG/DAY	16990= 16999= 17002= 17008= 17039= 17040= 17042= 17045=	
N REPROT TH NICK	/DAY	38 33 34 27 37 37 32	34 4. 8 8
APPENDIX N ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	2 10 MG/KG/DAY	17009= 17011= 17011= 17015= 17020= 17044= 17046= 17048=	
A ONE		35 35 35 37 27 35 35	36 5. 4 7
	0 MG/KG/DAY	16996= 16997= 17010= 17018= 17032= 17033= 17035= 17036=	
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP: LEVEL:		MEAN S. D. N
SLI ST CLI ENT	1 1 1 1	 	

a ANIMAL WAS MATING. b ELIMINATED DUE TO LEAKING WATER BOTTLE.

4 9	! !	1 1 1	
PAGE 5 TO	/DAY	24 0 0 4 4 2 3 4 4 4 4 4 4 4 4 4 4 4 3 4 4 3 4 4 3 4 4 3 4	36 6. 4 7
I WEEK	6 75 MG/KG/DAY	17000= 17014= 17016= 17019= 17021= 17022= 17022= 17022= 17027=	
		57 47 35 31 97 29 30 53	47 22.8 8
S	5 MG/KG/DAY	17024= 17024= 17026= 17028= 17029= 17034= 17043= 17047=	
IN RATS	/DAY	40 28 27 45 30 39 38 28	34 6. 7 8
A ONE-GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)		17001= 17005= 17007= 17012= 17013= 17023= 17041= 17049=	
N .NGE- FI N : HEXAHY DATA (32 32 33 34 44 35 35	39 6. 9 8
APPENDIX N TON REPRODUCTION RANGE-FINDING S WITH NICKEL SULFATE HEXAHYDRATE O WATER CONSUMPTION DATA (GRAMS	M A L E 3 3 20 MG/KG/DAY	16990= 16999= 17002= 17008= 17039= 17040= 17042= 17045=	
N REPRO TH NI CK WATER C	/DAY	32 32 44 28 33 40 33	35 5. 0 8
- GENERATI 0 WI VI DUAL FO	2 10 MG/KG/DAY	17009= 17011= 17015= 17017= 17020= 17044= 17046= 17046=	
A ONE INDI		32 32 67 67 27 39 a	43 14. 2 7
	1 0 MG/KG/DAY	16996= 16997= 17010= 17018= 17032= 17033= 17033= 17035=	
3472. 3 INC.			AN D.
SLI STUDY NO.: (CLI ENT: NI PERA, 1	GROUP: LEVEL:		MEAN S. D. N

a UNSCHEDULED EUTHANASIA - MORIBUND. b eliminated due to broken water bottle.

	 	1 1 1	
PAGE 5	/DAY	100 51 31 35 37 43 41 39	47 22. 2 8
P.	6 75 MG/KG/DAY	17000= 17014= 17016= 17019= 17021= 17022= 17022= 17025= 17027=	
	/DAY	44 50 37 31 105 33 32 32 53	48 24. 5 8
50	50 MG/KG/DAY	17004= 17024= 17026= 17028= 17029= 17034= 17047= 17047=	•
IN RATS AL/DAY)	/DAY	29 29 27 27 38 38 27	34 6. 7 8
APPENDIX N ATI ON REPRODUCTION RANGE-FINDING STUDY IN RAI WITH NICKEL SULFATE HEXAHYDRATE FO WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	4 30 MG/KG/DAY	17001= 17005= 17007= 17012= 17013= 17023= 17041= 17049=	
N .NGE- FI N : HEXAHY DATA (39 33 35 27 27 45 45	37 8. 2 8
APPENDIX N 1 ON REPRODUCTION RANGE-FINDING S WITH NICKEL SULFATE HEXAHYDRATE O WATER CONSUMPTION DATA (GRAMS)	M A L E 3 20 MG/KG/DAY	16990= 16999= 17002= 17008= 17039= 17040= 17042= 17045=	
N REPROJ TH NICKI WATER C		32 28 28 35 34 34 33 33	33 4. 4 8
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO WATER CONSUMPTION DATA (GRANS/ANIMAL/DAY)	2 10 MG/KG/DAY	17009= 17011= 17011= 17017= 17020= 17044= 17046= 17046=	
A ONE INDI		35 31 36 34 34 36 36	39 11.9 7
	1 0 MG/KG/DAY	16996= 16997= 17010= 17018= 17032= 17033= 17033= 17035=	
3472. 3 I NC.		1 1 1 1 1 1	AN D.
SLI STUDY NO.: CLIENT: NIPERA,	GROUP: LEVEL:		MEAN S. D. N

a UNSCHEDULED EUTHANASIA - MORIBUND.

	 	1 1	
PAGE 6 WEEK 7 TO 8	/DAY	111 111 36 34 39 40 42 40	48 25. 7 8
WEEK	6 75 MG/KG/DAY	17000= 17014= 17014= 17019= 17021= 17022= 17022= 17022= 17022=	
	/DAY	45 8 36 31 109 28 33 53	48 28.3 7
S	50 MG/KG/DAY	17004= 17024= 17026= 17028= 17029= 17034= 17043= 17047=	
IN RATS	/DAY	36 23 24 84 87 36 36 31	34 6. 6 8
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	4 30 MG/KG/DAY	17001= 17005= 17007= 17012= 17013= 17023= 17041= 17049=	
N .NGE- FI N : HEXAHY DATA (42 36 27 34 30 41 31	35 6. 1 8
APPENDIX N I ON REPRODUCTI ON RANGE-FINDING WI TH NI CKEL SULFATE HEXAHYDRATE O WATER CONSUMPTI ON DATA (GRAMS	M A L E 3 20 MG/KG/DAY	16990= 16999= 17002= 17008= 17039= 17040= 17042= 17045=	
N REPRO TH NI CK WATER C		32 26 17 33 25 28 40 31	29 6.9 8
- GENERATI O WI VI DUAL FO	2 10 MG/KG/DAY	17009= 17011= 17015= 17017= 17020= 17044= 17046= 17046=	
A ONE INDI		252 233 24 34 41	38 12. 7 7
	1 0 MG/KG/DAY	16996= 16997= 17010= 17018= 17032= 17033= 17033= 17035=	
3472. 3 INC.	ان نو		MEAN S. D. N
SLI STUDY NO.: CLIENT: NIPERA,	GROUP: LEVEL:		ME S.

a UNSCHEDULED EUTHANASIA - MORIBUND. b ELIMINATED DUE TO BROKEN WATER BOTTLE.

	1		;											
PAGE 7 WEEK 1 TO 2			/DAY	21	36	24	38	33	30	25	25	29	6. 1	∞
WEEK		9	75 MG/KG/DAY	197=	210 =	213 =	220 =	228 =	235=	244 =	245 =			
	1		/DAY	34	30	28	40	24	22	18	а	28	7.5	7
		5	50 MG/KG/DAY	194=	199 =	202 =	215 =	216 =	226 =	227 =	232=			
IN RATS AL/DAY)	1		/DAY	25	33	56	38	28	28	27	24	29	4.5	∞
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)			30 MG/KG/DAY	=002	204 =	207=	212 =	217 =	222 =	230=	240 =			
N NGE- FI ND HEXAHYD DATA (G	Э		/DAY	25	28	25	30	31	22	37	56	28	4.5	∞
APPENDIX N DUCTION RANG SL SULFATE I	F E M A L E	3	20 MG/KG	177=	198 =	205 =	=808=	218 =	239 =	241 =	242 =			
N REPROI TH NI CKI WATER CC			/DAY	24	27	39	21	23	25	21	а	56	6. 2	7
GENERATI 0 WI /I DUAL FO		2	10 MG/KG/DAY	188=	195 =	224 =	229 =	234 =	236 =	238=	243=			
A ONE- INDIV			/DAY	20	29	34	25	33	19	31	23	27	5.7	∞
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	O MG/KG/DAY	192=	196 =	=902	219 =	221 =	231=	233=	237=			
3472. 3 INC.		. .										N	·	
SLI STUDY NO.: 3 CLIENT: NIPERA, I		GROUI	LEVEL:									MEA	S. D.	N

a ELIMINATED DUE TO LEAKING WATER BOTTLE.

8 T0 3			1	2	3	4	3	3	8	26	&			
PAGE WEEK 2		6 75 MC/KG/DAV	I PI MA/ NA/ DAI							244 = 2		32	13. 2	8
		/DAV	, DAI	32	53	53	41	24	21	18	а	28	7.7	7
		5 SO MC/KC/DAV	OC IMP/ DG	194=	199 =	202 =	215 =	216 =	226 =	227 =	232=			
IN RATS AL/DAY)		/DAV	' DAI	22	33	21	32	21	30	28	22	56	5.2	∞
ING STUDY RATE RAMS/ANI M		4 30 MC/KG/DAV	30 IMB/ NG	=002	204 =	207=	212 =	217 =	222 =	230=	240 =			
N NGE- FI ND HEXAHYD DATA (G	Э	/DAV	/ DAI	25	30	28	33	31	23	35	25	29	4.4	∞
APPENDIX N DUCTION RANG SL SULFATE I	F E M A L E -	3 90 MC/KG/DAV	20 MG/ NG	177=	198=	205 =	208=	218 =	239=	241 =	242 =			
N REPROL TH NI CKE WATER CC		/DAV	/ DAI	25	28	40	19	24	56	20	В	56	6.9	7
APPENDIX N ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)		$\frac{2}{10 \text{ MC/KG/DAV}}$	IO MG/ NG	188=	195 =	224 =	229 =	234 =	236 =	238=	243 =			
A ONE-INDIV		/DAV	/ DAI	21	30	35	56	34	21	23	22	56	5.8	∞
		1 O MC/RC/DAV		192=	196 =	=508	219 =	221 =	231=	233=	237=			
3472. 3 I NC.		쯗 :	; ;									AN	D.	
SLI STUDY NO.: S CLIENT: NIPERA, 1		GROUP:	LEVE.									ME	S. D.	N

NOTE: WATER CONSUMPTION WAS NOT MEASURED DURING MATING (WEEK 3 TO 4). a ELIMINATED DUE TO LEAKING WATER BOTTLE.

!		
6 75 MG/KG/DAY		
/DAY	227= 19	19
- 4 30 MG/KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1	
F E M A L E 20 MG/KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2 10 MG/KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1	
0 MG/KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1	
GROUP: LEVEL:		MEAN S. D. N
	1 2 4 5 MG/KG/DAY 10 MG/KG/DAY 20 MG/KG/DAY 30 MG/KG/DAY 50 MG/KG/DAY 75 MG/KG/DAY	1 2 F E M A L E 4 6 6 6 MG/KG/DAY 10 MG/KG/DAY 20 MG/KG/DAY 30 MG/KG/DAY 50 MG/KG/DAY 75 MG/KG/DAY 227= 19

WATER CONSUMPTION FOR FEMALES WITH POSITIVE EVIDENCE OF MATING IS PRESENTED IN APPENDIX 0. STANDARD DEVIATION WAS NOT CALCULATED WHEN N < 2. NOTE:

<u> </u>	ı	
6 MG/KG/DAY		
5 MG/KG/DA	227=	20
- 4 30 MG/KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1	
F E M A L E 3 20 MG/KG/DAY	1 1 1 1 1 1 1 1 1 1	
2 ;/KG/D		
0 MG/KG/DAY	1 1 1 1 1 1 1 1 1 1 1 1 1	
GROUP: LEVEL:		MEAN S. D. N
	0 MG/KG/DAY 10 MG/KG/DAY 20 MG/KG/DAY 30 MG/KG/DAY 50 MG/KG/DAY 75 MG/KG/DAY	1 2 6 6 0 MG/KG/DAY 10 MG/KG/DAY 20 MG/KG/DAY 30 MG/KG/DAY 50 MG/KG/DAY 75 MG/KG/DAY 227= 20

NOTE: WATER CONSUMPTION FOR FEMALES WITH POSITIVE EVIDENCE OF MATING IS PRESENTED IN APPENDIX 0. STANDARD DEVIATION WAS NOT CALCULATED WHEN N < 2.

		! !		:			
PAGE 11	WEER / 10 8		6 75 MG/KG/DAY	20			
S			5 50 MG/KG/DAY	227= 20	20	:	1
DING STUDY IN RAT	GRAMS/ANI MAL/DAY)		4 30 MG/KG/DAY				
E-GENERATI ON REPRODUCTION RANGE-FINDING STUDY IN RATS	WITH NICKEL SULFATE HEADHIDKATE IVIDUAL FO WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)		3 20 MG/KG/DAY				
GENERATI ON REPRO	WI DUAL FO WATER CO		2 10 MG/KG/DAY				
A ONE-	INDI		1 O MG/KG/DAY				
SLI STUDY NO.: 3472.3			GROUP: LEVEL:		MEAN	S. D.	Z

WATER CONSUMPTION FOR FEMALES WITH POSITIVE EVIDENCE OF MATING IS PRESENTED IN APPENDIX 0. STANDARD DEVIATION WAS NOT CALCULATED WHEN N < 2. NOTE:

APPENDIX O

Individual F0 Gestation Water Consumption Data (grams/animal/day)

SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 1: 0 MG/KG/DAY PREGNANCY STATUS DAY 192 G 196 G 206 G 219 G 221 G 221 G 231 G 231 G 233 G 233 G 233 G 235 G 235 G 236 G 206 G 206 G 206 G 206 G 207 G 207 G 207 G 208 G 209 G 200	TUDY NO.: T: NI PERA, T: O MC/K T: O MC/K STATUS STATUS G G G G G G G G G G G G G G G G G G G	3472. 3 INC. (G/DAY	72. 3 C. DAY DAY 0- 7 29 38 48 31 40 30 40 30 42 33 33 6. 7	A (INDIVI) INDIVI) 33 41 45 34 41 35 41 41 10.1	A ONE- GENERATI ON REPRODUCTI ON RANGE- FI NDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDI VI DUAL FO GESTATI ON WATER CONSUMPTI ON DATA (GRANS/ANIMAL/DAY) 7-14 14-20 33 36 41 47 63 59 44 48 41 56 35 44 41 56 35 46 30 1 7.3
Z			∞	∞	88
G = GRAVII	NG	= NONG	RAVI D:	NOT INCLU	G = GRAVID NG = NONGRAVID: NOT INCIIIDED IN CALCHI-ATION OF MEAN

APPENDIX 0	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKET SHIFATE HEXAHYDRATE	NDIVIDUAL FO GESTATION WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)														
	ONE-GENERATION REP	DUAL FO GESTATION			14-20	44	69	70	47	29	46	35	В	54	14.3	7
	A	INDIV		! ! ! !	7-14	41	45	59	40	а	38	28	а	42	10.1	9
	3472. 3		KG/DAY	1 1 1 1 1 1 1 1 1 1	DAY 0- 7	34	49	22	38	43	32	27	а	40	6.6	7
	SLI STUDY NO.: 3472.3	OFITMIT TRA	GROUP 2: 10 MG/KG/DAY	PREGNANCY	STATUS	!			229 G					MEAN	S. D.	Z

G = GRAVID NG = NONGRAVID; NOT INCLUDED IN CALCULATION OF MEAN a ELIMINATED DUE TO LEAKING WATER BOTTLE.

GROUP 3: 20 MG/KG/DAY PREGNANCY PREGNANCY STATUS DAY 0- 7 7-14 14-20 I 77 G 38 46 55 198 G 49 54 59 59 48 208 G 50 48 51 59 48 218 G 44 45 60 60 2218 G 44 45 60 60 2218 G 31 35 35 242 G 31 31 31 35 35 8 8 8 8 8 8	SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	3472. 3 INC.	A	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE
0- 7 7-14 38 46 49 54 38 39 50 48 44 45 35 35 46 55 31 31 41 44 6.9 8.6	GROUP 3: 20 MG,	/KG/DAY	INDIVI	DUAL FO GESTATION WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)
G 49 54 6 6 9 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	PREGNANCY		1	
G 38 46 G 49 54 G 38 39 G 50 48 G 44 45 G 35 35 G 46 55 G 46 55 G 6.9 8.6	SIATUS	DAY 0- 7	7-14	14-20
G 49 54 G 38 39 G 50 48 G 44 45 G 35 35 G 46 55 G 41 44 H 41 44 6.9 8.6		38	46	25
G 38 39 G 44 45 G 35 35 G 46 55 G 46 55 G 46 55 G 46 6.9 8.6 8 8		49	54	59
G 50 48 G 44 45 G 35 35 G 46 55 G 31 31 41 44 6.9 8.6		38	39	48
G 44 45 G 35 35 G 46 55 G 31 31 41 44 6.9 8.6		20	48	51
G 35 35 G 46 55 G 31 31 41 44 6.9 8.6		44	45	09
G 46 55 G 31 31 41 44 6.9 8.6		35	35	35
G 31 31 41 44 6.9 8.6 8 8		46	52	578
41 44 6.9 8.6 8 8		31	31	35
6.9 8.6 8 8	MEAN	41	44	50
&	S. D.	6.9	8.6	10. 2
	N	∞	∞	∞

APPENDIX 0

G = GRAVID NG = NONGRAVID; NOT INCLUDED IN CALCULATION OF MEAN a ELIMINATED DUE TO BROKEN WATER BOTTLE. b ELIMINATED DUE TO ABERRANT VALUE.

APPENDIX 0	ONE- GENERATI ON REPRODUCTI ON RANGE- FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE	DUAL FO GESTATION WATER CONSUMPTION DATA (GRANS/ANIMAL/DAY)			14-20	43	09	P	77	73	81	52	49	62	14.9	7
	ONE- GEN			1	14-20	43	09	q	77	73	81	52	49	62	14.9	7
	A	I NDI VI			7-14	38	59	51	64	45	33	48	В	48	11.0	7
	3472. 3 INC.		KG/DAY		DAY 0- 7	57	22	46	22	39	22	44	32	48	9.4	∞
	SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.		GROUP 4: 30 MG/KG/DAY	PREGNANCY	STATUS	200 G	204 G	207 G	212 G	217 G	222 G	230 G	240 G	MEAN	S. D.	Z

3 FILMINATED DIE TO LEAKING WATER BOTTIE
--

GROUP 6: 75 MG/KG/DAY		TANTANT	I DIJAI EO CECTATION WATED CONCINED ON DATA (CDAMCIAM)	
		I NDI VI I	INDIVIDUAL FO GESTATION WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	
PREGNANCY STATUS DAY	DAY 0- 7	7-14	14-20	
197 G	28	24	49	
210 G	06	87	R	
213 G	41	40	50	
220 G	47	81	74	
228 G	53	56	R	
235 G	35	35	46	
244 G	64	89	99	
245 G	33	36	41	
MEAN	49	53	54	
S. D.	20.3	23.3	12.8	
Z	∞	œ	9	

APPENDIX P

Individual F0 Lactation Water Consumption Data (grams/animal/day)

DING STUDY IN RATS PAGE 1 DRATE	VATA (GKAWD/ANIWAL/DAI)													
APPENDIX P A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE OF A CONCENTRAL TO A CONCENTRAL WATCH CONCENTRAL OF A CONCENTRAL OF THE	DUAL FU LACIATION WAIEK CONSUMFILON DATA (GRAWS/ANIWAL/DAT)		7-10	89	89	75	61	74	72	99	51	29	7.9	∞
A ON	I NDI VI	! ! ! ! !	4- 7	58	26	28	59	62	56	48	48	56	5. 1	œ
).: 3472.3 3RA, INC.	GROUP 1: 0 MG/KG/DAY		DAY 1- 4	54	51	70	50	99	54	53	41	55	9.5	8
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.	GROUP 1: 0	ANIMAL	NO.	192	196	206	219	221	231	233	237	MEAN	S. D.	N

SLI STUDY NO.: 3472.3	3472. 3		APPENDIX P A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS MITH NICKEI SIII FATE HEXAHYDRATE	23
CELENT: MILEMAN,		IND	INDIVIDUAL FO LACTATION WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	
GROUP 2: 10 MG/KG/DAY	/KG/DAY			
ANI MAL NO.	DAY 1- 4 4- 7	4- 7	7- 10	1 1 1 1 1 1
188	a	09		
195	99	64	98	
224	58	62		
229	EUI	EUTHANI ZED -	TOTA	
234	09	62		
236	64	74		
238	45	53	89	
243	63	71		
MEAN	59	64	78	
S. D.	7.6	7.0	-	
N	9	7	E	
a ELIMINATED DUE TO ABERRANT VALUE.	UE TO ABERRA	NT VALUE		

E-FINDING STUDY IN RATS EXAHYDRATE	ION DATA (GRAMS/ANIMAL/DAY)													
APPENDIX P A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE	NDIVIDUAL FO LACTATION WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)			7-10	06 ,	. 80			06	82	73	81	13.4	7
	INI			4 4-7						59 62		52 60	. 4 10. 2	
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.	TANK ON OUR COO F MITOGO	30 MG/KG/DAY		DAY 1- 4		,	-	•	•				13.4	
SLI STUDY CLI ENT: NI	, dirono	GKUUF 4:	ANIMAL	NO.	200	207	212	217	222	230	240	MEAN	S. D.	N

A ONE- GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS PAGE 5		NDI VI DUAL FO LACTATI ON WATER CONSUMPTI ON DATA (GRAMS/ANI MAL/DAY)													
)NE- GENERATI (W	OUAL FO LACT		! ! ! ! ! ! ! !	7-10	74	98	84	78	73	79	95	81	7.7	7
Α (I NDI VI I		1	4- 7	51	29	74	54	99	09	88	99	12.6	7
3			Y.		DAY 1- 4 4- 7	39	52	54	61	56	51	86	57	15.5	7
3472.	', INC.		IG/KG/DA	1 1 1 1 1 1	DAY										
SLI STUDY NO.:	CLI ENT: NI PERA, INC.		GROUP 5: 50 MG/KG/DAY	ANIWAL	NO.	194	199	202	215	216	226	232	MEAN	S. D.	N

PAGE 6												
APPENDIX P A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO LACTATION WATER CONSUMPTION DATA (GRAMS/ANIMAL/DAY)	DAY 1- 4 4- 7 7-10	46 50 60	70 82	THANI ZED - TOTAL LITTER LOSS	102 122	60 81	79 86	65 75	JUTHANIZED - TOTAL LITTER LOSS	71 84	13.5 18.0 20.6	9 9
3472.3 INC. KG/DAY)AY 1-	4(7	国	7	4	39	5	回	9	13. 8	•
SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC. GROUP 6: 75 MG/KG/DAY	ANIMAL NO.	197								MEAN	S. D.	N

APPENDIX Q

Individual F0 Reproductive Performance Data

PAGE 1		
TUDY IN RATS DATA	PREGNANCY STATUS	
APPENDIX Q GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO REPRODUCTIVE PERFORMANCE DATA	PRECOI TAL INTERVAL (DAYS)	w ∞ ∞ ∞ ∞ 4 ∞
A ONE-GENERATION RE WITH N I NDI VI DUAL F	MALE NO.	16996 16997 17010 17018 17032 17033 17036
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 1: 0 MG/KG/DAY	FEMALE NO.	192 196 206 219 221 231 233 237 G = GRAVID NG = NONGRAVID

PAGE 2			
JDY IN RATS DATA	PREGNANCY STATUS	5550	
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO REPRODUCTIVE PERFORMANCE DATA	PRECOI TAL INTERVAL (DAYS)	o o 4 o o o 1 o	
A ONE-GENERATION REI WITH NI INDIVIDUAL FO	MALE NO.	17009 17011 17015 17017 17020 17044 17046 17048	
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 2: 10 MG/KG/DAY	FEMALE NO.	188 195 224 229 234 236 243	G = GRAVID $NG = NONGRAVID$

PAGE 3			
IDY IN RATS DATA	PREGNANCY STATUS		
APPENDIX Q GENERATION REPRODUCTION RANCE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO REPRODUCTIVE PERFORMANCE DATA	PRECOI TAL INTERVAL (DAYS)	40010101	
A ONE-GENERATION REF WITH NI INDIVIDUAL FO	MALE NO.	16990 16999 17002 17008 17039 17040 17042	
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 3: 20 MG/KG/DAY	FEMALE NO.	177 198 205 208 218 239 241 242	G = GRAVID $NG = NONGRAVID$

4		
PAGE		
3 STUDY IN RATS IE NCE DATA	PREGNANCY STATUS	
APPENDIX Q GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO REPRODUCTIVE PERFORMANCE DATA	PRECOI TAL INTERVAL (DAYS)	w 4 w ∞ w ৮ w ∞
A ONE-GENERATION F WITH INDIVIDUAL	MALE NO.	17001 17005 17007 17012 17013 17023 17041
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 4: 30 MG/KG/DAY	FEMALE NO.	200 204 207 212 217 222 230 240 G = GRAVID NG = NONGRAVID

PAGE 5		
DY IN RATS ATA	PREGNANCY STATUS	0 0 0 0 0 0 0
APPENDIX Q APPENDIX Q MITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO REPRODUCTIVE PERFORMANCE DATA	PRECOI TAL INTERVAL (DAYS)	∝ಬ <i>⋈</i> ಬಬ⇔ದ4
A ONE-GENERATION REF WITH NI INDIVIDUAL FC	MALE NO.	17004 17024 17026 17029 17029 17034 17043
SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC. GROUP 5: 50 MC/KG/DAY	FEMALE NO.	194 199 202 215 216 226 227 232

G = GRAVID NG = NONGRAVID A PRESENCE OF SPERM WAS NOT DETECTED.

PAGE 6			
UDY IN RATS DATA	PREGNANCY STATUS		
E-GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO REPRODUCTI VE PERFORMANCE DATA	PRECOI TAL INTERVAL (DAYS)	4 to to to to to to	
A ONE-GENERATION REPI WITH NIO INDIVIDUAL FO	MALE NO.	17000 17014 17016 17019 17021 17022 17025	
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 6: 75 MC/KG/DAY	FEMALE NO.	197 210 213 220 228 235 244	G = GRAVID $NG = NONGRAVID$

APPENDIX R

Individual F0 Gestation Length Data

-			1										
PAGE	30 MG/KG/DAY	GESTATI ON LENGTH	23	22	22	22	22	22	22		22. 1	0.4	7
	GROUP 4:	ANI MAL NO.	200	207	212	217	222	230	240		MEAN	S. D.	Z
APPENDIX R ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GESTATION LENGTH DATA (DAYS)	20 MG/KG/DAY	GESTATION LENGTH	22	22	22	22	23	22	22	22	22. 1	0.4	∞
	GROUP 3:	ANI MAL NO.	177	198	205	208	218	239	241	242	MEAN	S. D.	Z
	10 MG/KG/DAY	GESTATI ON LENGTH	24	22	22	23	22	23	22	22	22. 5	0.8	8
A ONE-GEN	GROUP 2:	ANI MAL NO.	188	195	224	229	234	236	238	243	MEAN	S. D.	Z
3472. 3 INC.	0 MG/KG/DAY	GESTATION LENGTH	22	22	22	22	22	22	22	22	22. 0	0.0	∞
SLI STUDY NO.: CLIENT: NIPERA,	GROUP 1:	ANI MAL NO.	192	196	506	219	221	231	233	237	MEAN	S. D.	Z

0.			!										
€3			 										
PAGE			 										
APPENDIX R A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GESTATION LENGTH DATA (DAYS)	75 MG/KG/DAY	GESTATI ON LENGTH	22	23	23	22	22	23	22	23	22. 5	0.5	∞
NERATI V NDI VI I	75	! !											
A ONE-GE	GROUP 6:	ANI MAL NO.	197	210	213	220	228	235	244	245	MEAN	S. D.	Z
3472. 3 INC.	50 MG/KG/DAY	GESTATION LENGTH	22	22	22	22	23	23	23		22. 4	0.5	7
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	194	199	202	215	216	226	232		MEAN	S. D.	Z

APPENDIX S

Individual F0 Gross Necropsy Observations

E	GRADE	Çı,	d d d	а а	4 4 4	d d d
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	FOUND DEAD OR EUTHANIZED MORIBUND		SS: HAIRCOAT - DARK MATERIAL AROUND EYES, NOSE, MOUTH AND FOREPAWS, RED SS: HAIRCOAT - WET MATTING AROUND MOUTH, CLEAR COLORLESS SS: FLUID CONTENTS APPROXIMATELY 3.0 ML, CLOUDY RED	E E	GROSS: HEMORRHAGE BLOOD PRESENT ON SURFACE OF MENINGES GROSS: MOTTLED ALL LOBES; RED AND DARK RED GROSS: CORPORA LUTEA - REGRESSION GROSS: CORPORA LUTEA - REGRESSION GROSS: CORPORA LUTEA - ACCURATE COLUMN NOT DOCCUMENT.	CO I M HA
A ONE-GENERATION REPR WITH NIC INDIVIDUAL FO	FOUND DEA	MALE PHAGUS	EXT. APPEARANCE GROSS: EXT. APPEARANCE GROSS: THORACI C CAVITY GROSS:	GENERAL COMMENT GROSS: SUBCUTANEOUS TIS GROSS:	20 MG/KG/DAY FEMALE FOUND GROSS: LUNGS GROSS: OVARIES GROSS:	TRACHEA GROSS: UTERINE HORNS GROSS: EXT. APPEARANCE GROSS:
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		ANI MAL NO. 17035 GROUP:			ANI MAL NO. 177 GROUP:	

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

		! !	
લ	GRADE	Ь	Ь
PAGE	GR	1 1 1 1	
APPENDIX S E- GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	FOUND DEAD OR EUTHANIZED MORIBUND	GROSS: CONTENT ABNORMAL APPROXIMATELY 3. OM: OF DARK RED FILITD	UTANEOUS TIS GROSS: HEMORRHAGIC AREA DORSAL SKULL, WITH ASSOCIATED FRACTURE OF RIGHT PARIETAL
REPRODU NI CKEL L FO GR	DEAD 0	GROSS:	GROSS:
A ONE- GENERATI ON] WI TH I NDI VI DUA		THORACI C CAVITY	SUBCUTANEOUS TIS
3472. 3 INC.		177 (CONTI NUED)	
).: :		17	
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

SLI STUDY NO.: CLI ENT: NI PERA,).: 3472.: ERA, INC.	 3	A ONE-C	SENERATION F WITH INDIVIDUAL	APPENDIX S A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	PAGE 3
					SCHEDULED EUTHANASIA	GRADE
ANI MAL NO.	16996	GROUP:	0 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ANI MAL NO.	16997	GROUP:	0 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	
ANI MAL NO.	17010	GROUP:	0 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	
ANI MAL NO.	17018	GROUP:	0 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	
ANI MAL NO.	17032	GROUP:	O MG/KG/DAY ORAL CA	MALE CAVI TY	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: INCISOR(S) - BROKEN UPPER RIGHT	ď
ANI MAL NO.	17033	GROUP:	0 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	
ANI MAL NO.	17036	GROUP:	0 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	
ANI MAL NO.	17009	GROUP:	10 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	
ANI MAL NO.	17011	GROUP:	10 MG/KG/DAY KI DNEYS	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: CYST(S) LEFT, CORTICAL AND CUT SURFACES, TWO, BOTH 0.2 CM DIAMETER	P ETER
ANI MAL NO.	17015	GROUP:	10 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SIGNIFICANT CHANGES OBSERVED	

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

PAGE 4	GRADE		ď			ď	ď				
		49	49	49	49	49	49	49	49	49	49
DING STUDY IN RATS RATE ERVATIONS		9/21/98 STUDY DAY CHANGES OBSERVED	9/21/98 STUDY DAY	9/21/98 STUDY DAY CHANGES OBSERVED	9/21/98 STUDY DAY CHANGES OBSERVED	9/21/98 STUDY DAY	EUTHANASIA 9/21/98 STUDY DAY LATED PELVIS BILATERAL; BOTH CLEAR FLUID FILLED	9/21/98 STUDY DAY CHANGES OBSERVED			
APPENDIX S A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT	SCHEDULED EUTHANASIA 9. GROSS: HAIRCOAT - HAIRLOSS FORELIMBS	SCHEDULED EUTHANASIA 9/21/98 STUD' GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: REDDENED GLANDULAR MUCOSA	SCHEDULED EUTHANASIA GROSS: DILATED PELVIS BILATERAL; BG	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT			
ENERATI ON WI TE I NDI VI DUA		MALE	MALE APPEARANCE	MALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE
A ONE- G		10 MG/KG/DAY	10 MG/KG/DAY EXT. AP	10 MG/KG/DAY	10 MG/KG/DAY	10 MG/KG/DAY STOMACH	20 MG/KG/DAY KI DNEYS	20 MG/KG/DAY	20 MG/KG/DAY	20 MG/KG/DAY	20 MG/KG/DAY
es Si		17017 GROUP:	GROUP:	GROUP:	GROUP:	17048 GROUP:	GROUP:	GROUP:	GROUP:	17008 GROUP:	GROUP:
: 3472. A, INC.		17017	17020	17044	17046 GROUP:	17048	16990	16999	17002	17008	17039 GROUP:
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	ANIMAL NO.	ANI MAL NO.	ANI MAL NO.	ANIMAL NO.	ANIMAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

PAGE 5	GRADE	 			Ъ				Ъ	ď	0 P
_		(•	•		•	•	•			9/21/98 STUDY DAY 49 TIC AND LEFT LOBES; MULTIPLE; PINPOINT TO
		Y 49	У 49	У 49	У 49	У 49	У 49	У 49	У 49	У 49	Y 49 S; MU
ING STUDY IN RATS RATE ERVATIONS		9/21/98 STUDY DAY CHANGES OBSERVED	9/21/98 STUDY DAY CHANGES OBSERVED	9/21/98 STUDY DAY CHANGES OBSERVED	EUTHANASIA 9/21/98 STUDY DAY NTENT ABNORMAL CLEAR YELLOW MUCOID MATERIAL	EUTHANASIA 9/21/98 STUDY DAY SI GNIFI CANT CHANGES OBSERVED	9/21/98 STUDY DAY CHANGES OBSERVED	9/21/98 STUDY DAY CHANGES OBSERVED	9/21/98 STUDY DAY	EUTHANASIA 9/21/98 STUDY DAY IL - ENLARGEMENT PROXIMAL PORTION; 0.6 CM DIAMETER	EUTHANASIA 9/21/98 STUDY DAY 49 CI CI BIGHT DIAPHRAGMATIC AND LEFT LOBES; MULTIPLE; PINPOINT TO 0.3 CM, TAN
APPENDIX S A ONE- GENERATI ON REPRODUCTI ON RANGE- FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA GROSS: NO SI GNI FI CANT	SCHEDULED EUTHANASIA GROSS: NO SI GNI FI CANT	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT	SCHEDULED EUTHANASIA GROSS: CONTENT ABNORMAL CLEAR YELLOW N	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT	SCHEDULED EUTHANASIA GROSS: REDDENED GLANDULAR MUCOSA	SCHEDULED EUTHANASIA GROSS: TAIL - ENLARGEMENT PROXIMAL PORTION	SCHEDULED EUTHANASIA GROSS: FOCI RIGHT DIAPHRA 0.3 CM. TAN
GENERATI ON WI TH I NDI VI DUA		MALE	MALE	MALE	MALE Y BLADDER	MALE	MALE	MALE	MALE H	MALE APPEARANCE	MALE
A ONE-		20 MG/KG/DAY	20 MG/KG/DAY	20 MG/KG/DAY	30 MG/KG/DAY URINARY	30 MG/KG/DAY	30 MG/KG/DAY	30 MG/KG/DAY	30 MG/KG/DAY STOMACH	30 MG/KG/DAY EXT. A	ANI MAL NO. 17041 GROUP: 30 MG/KG/DAY LUNGS
. 3		17040 GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:
0.: 3472.; ERA, INC.		17040	17042	17045	17001	17005	17007	17012	17013	17023	17041
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

SLI STUDY NO.: CLIENT: NIPERA,	: 3472. ; A, INC.	. 23	A ONE-G	ENERATI ON DEN THE WITH INDI VI DUA	APPENDIX S E- GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	IG STUDY IN RATS TTE VATI ONS	PAGE	9
					SCHEDULED EUTHANASIA		GRADE	DE
ANI MAL NO.	17049	17049 GROUP:	30 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT CH	9/21/98 STUDY DAY 49 CHANGES OBSERVED	6	1 1 1 1
ANI MAL NO.	17004	GROUP:	50 MG/KG/DAY KI DNEYS	MALE	SCHEDULED EUTHANASIA GROSS: DILATED PELVIS RIGHT	9/21/98 STUDY DAY 49	6	-1
ANI MAL NO.	17024	GROUP:	50 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT CH	9/21/98 STUDY DAY 49 CHANGES OBSERVED	6	
ANI MAL NO.	17026	GROUP:	50 MG/KG/DAY URI NARY	MALE BLADDER	SCHEDULED EUTHANASIA GROSS: CONTENT ABNORMAL YELLOW SH-CLEAR	EUTHANASIA 9/21/98 STUDY DAY 49 NTENT ABNORMAL YELLOWI SH- CLEAR MUCOI D MATERIAL	6	а
ANI MAL NO.	17028	17028 GROUP:	50 MG/KG/DAY LUNGS URI NARY	/DAY MALE LUNGS URI NARY BLADDER	SCHEDULED EUTHANASIA GROSS: FOCI ALL LOBES; MULT GROSS: CONTENT ABNORMAL YELLOW SH-CLEAR	CUTHANASIA 9/21/98 STUDY DAY 49 CLI ALL LOBES; MULTIPLE; PINPOINT TO 0.4 CM; NYTENT ABNORMAL YELLOWI SH-CLEAR MUCOID MATERIAL	9 CM: TAN; APPEAR RAISED	а а
ANI MAL NO.	17029	GROUP:	50 MG/KG/DAY KI DNEYS	MALE	SCHEDULED EUTHANASIA GROSS: ENLARGED BILATERAL; LEFT	9/21/98 STUDY DAY 49	9 RIGHT - 2.6 X 1.8 X	А
			KI DNEYS		GROSS: DILATED PELVIS		CHE WITH VEILOW EITH	1
			KI DNEYS		GROSS: CALCULI PITATEDAL MITT	LEFI - WILL CLEAR FLOID, KIGHI -		Ь
			URETERS			TFLE, OF 10 0.3 CM DIA	WE LEIN	1
			URETERS			MULTIPLE, UP TO 0.3 CM DIAMETER	WETER	Ф

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

SLI STUDY NO.: CLIENT: NIPERA,	.: 3472. RA, INC.	72.3	A ONE-	GENERATI ON WI TH I NDI VI DUA	APPENDIX S A ONE- GENERATION REPRODUCTION RANGE- FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	PAGE 7
					SCHEDULED EUTHANASIA	GRADE
ANI MAL NO.	17029	(CONTI NUED)	 	URI NARY BLADDER	GROSS: DI STENDED 2.8 X 2.2 X 1.1 CM GROSS: CALCULI	d d
			URI NARY	Y BLADDER	MULTIPLE, UP TO 0.4 CM DIAMETER GROSS: THICKENED	Ь
ANI MAL NO.	17034	GROUP:	50 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SIGNIFICANT CHANGES OBSERVED	
ANI MAL NO.	17043	GROUP:	50 MG/KG/DAY URI NARY	MALE Y BLADDER	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: CONTENT ABNORMAL YELLOWI SH-CLEAR MUCOI D MATERIAL	Ч
ANI MAL NO.	17047	GROUP:	50 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SIGNIFICANT CHANGES OBSERVED	
ANI MAL NO.	17000	GROUP:	75 MG/KG/DAY ABDOMI	/DAY MALE ABDOMI NAL CAVI TY	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: ADHESI ON INVOLVI NG DI APHRAGM, SPLEEN, BODY WALL, AND OMENTUM	ď
ANI MAL NO.	17014	GROUP:	75 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SIGNIFICANT CHANGES OBSERVED	
ANI MAL NO.	17016	GROUP:	75 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SIGNIFICANT CHANGES OBSERVED	
ANI MAL NO.	17019	17019 GROUP:	75 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: NO SIGNIFICANT CHANGES OBSERVED	
ANI MAL NO.	17021	GROUP:	75 MG/KG/DAY KI DNEYS	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: DILATED PELVIS RIGHT; CLEAR FLUID FILLED	

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

SLI STUDY NO.: CLIENT: NIPERA,	.: 3472.; RA, INC.	72.3	A ONE-C	GENERATI ON WI TH I NDI VI DUA	APPENDIX S A ONE- GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	PAGE	œ
					SCHEDULED EUTHANASIA	GRADE	DE
ANI MAL NO.	17021	17021 (CONTINUED)	NUED) LUNGS		GROSS: DARK RED FOCI ALL LOBES; MULTIPLE; PINPOINT TO 0.2 CM		Ъ
ANIMAL NO.	17022	GROUP:	75 MG/KG/DAY THYMUS	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: FOCI BOTH LOBES, SEVERAL, UP TO 0.2 CM DIAMETER, RED		Ь
ANI MAL NO.	17025	GROUP:	75 MG/KG/DAY TESTES TESTES TESTES THYMUS	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: DISCOLORED BILATERAL, PURPLE GROSS: SMALL BILATERAL, BOTH 2. 0 X 0. 9 X 0. 6 CM GROSS: FOCI BOTH LOBES, MULTIPLE, UP TO 0.1 CM DIAMETER, RED		d d d
ANI MAL NO.	17027	17027 GROUP:	75 MG/KG/DAY LUNGS	MALE	SCHEDULED EUTHANASIA 9/21/98 STUDY DAY 49 GROSS: DARK RED FOCI ALL LOBES; MULTIPLE; PINPOINT TO 0.2 CM		Ы
ANI MAL NO.	192	GROUP:	O MG/KG/DAY LUNGS UTERINE	DAY FEMALE LUNGS UTERINE HORNS	SCHEDULED EUTHANASIA 10/3/98 LACTATION DAY 21 GROSS: FOCI ALL LOBES; MULTIPLE; UP TO 0.1 CM DIAMETER; TAN; SOME FIRM GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 9,8	FI RM	<u>a</u> a
ANIMAL NO.	196	GROUP:	O MG/KG/DAY UTERINE	FEMALE F HORNS	SCHEDULED EUTHANASIA 10/2/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 7,10		Ы
ANI MAL NO.	206	GROUP:	O MG/KG/DAY UTERINE	FEMALE HORNS	SCHEDULED EUTHANASIA 10/3/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 11,5	 	Ь

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

_		 								;
6	GRADE	А	А	Д	Д	Д	Д	Д	Д	А
PAGE		TAN;				¥				1
APPENDIX S A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA 10/8/98 LACTATION DAY 21 GROSS: FOCI ALL LOBES: MULTIPLE; PINPOINT UP TO 0.3 CM IN DIAMETER;	SOME APPEAR CYSTIC GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 4, 9	SCHEDULED EUTHANASIA 10/3/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 8, 9	SCHEDULED EUTHANASIA 10/3/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 13, 6	SCHEDULED EUTHANASIA 10/4/98 LACTATION DAY 21 GROSS: FOCI RIGHT APICAL LOBE AND LEFT LOBE; TWO; EACH APPROXIMATELY	0.1 CM DIAMETER; TAN; SLIGHTLY RAISED GROSS: IMPLANTATION SCARS (LEFT, RIGHT) $7,9$	SCHEDULED EUTHANASIA 10/2/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 6, 10	SCHEDULED EUTHANASIA 10/5/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 0, 6	SCHEDULED EUTHANASIA 10/3/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 5, 12
ENERATI (WI		FEMALE	HORNS	FEMALE HORNS	FEMALE HORNS	FEMALE	HORNS	FEMALE HORNS	FEMALE HORNS	FEMALE
A ONE-G		O MG/KG/DAY LUNGS	UTERI NE HORNS	O MG/KG/DAY FEMALI UTERINE HORNS	O MG/KG/DAY FEMALI UTERINE HORNS	O MG/KG/DAY LUNGS	UTERINE HORNS	O MG/KG/DAY UTERINE	10 MG/KG/DAY UTERINE	10 MG/KG/DAY UTERINE
<u>ო</u>		219 GROUP:		GROUP:	GROUP:	GROUP:		237 GROUP:	GROUP:	GROUP:
3472. 3 INC.		219		221	231	233		237	188	195
SLI STUDY NO.: CLI ENT: NI PERA,		ANI MAL NO.		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

SLI STUDY NO.: CLIENT: NIPERA,	3472. 3 INC.		A ONE-GENERATION WITH INDIVIDUA	APPENDIX S A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	PAGE 10
				SCHEDULED EUTHANASIA	GRADE
ANIMAL NO.	224	GROUP:	10 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/4/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 6, 12	ď
ANI MAL NO.	229	GROUP:	10 MG/KG/DAY FEMALE a LI VER LUNGS	SCHEDULED EUTHANASI A 9/13/98 LACTATION DAY 0 GROSS: PALE ALL LOBES GROSS: MOTTLED ALL LOBES ALL LOBES.	d d
			STOMACH THYROI D	_	a, a,
			UTERINE HORNS	GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 6, 10	Ч
ANIMAL NO.	234	GROUP:	10 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/2/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 12, 2	ď.
ANI MAL NO.	236	GROUP:	10 MG/KG/DAY FEMALE SMALL INTESTINE UTERINE HORNS	SCHEDULED EUTHANASIA 10/4/98 LACTATION DAY 21 GROSS: CONTENT ABNORMAL ILEUM, RED MUCOID MATERIAL MIXED WITH DIGESTA GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 7, 10	Q . Q .
ANI MAL NO.	238	GROUP:	10 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/1/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 7,8	ď
SOLUTION OF THE PER LICES I LICES	NIE T	TOTAL		GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT	

a EUTHANIZED DUE TO TOTAL LITTER LOSS.

SLI STUDY NO.: CLI ENT: NI PERA,	3472.3 , INC.	2.3	A ONE-GENERATION WITH INDIVIDUA	APPENDIX S A ONE- GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	PAGE 11
				SCHEDULED EUTHANASIA	GRADE
ANI MAL NO.	243	GROUP:	10 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/3/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT)	d L
			EXT. APPEARANCE	GROSS: HAI RCOAT - HAI RLOSS LEFT FORELIMB	А
ANI MAL NO.	198	GROUP:	20 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/2/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 8,8	Ь
ANI MAL NO.	205	GROUP:	20 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/3/98 LACTATI ON DAY 21 GROSS: IMPLANTATI ON SCARS (LEFT, RI GHT)	А
			EXT. APPEARANCE	GROSS: HAI RCOAT - HAI RLOSS FORELI MBS	А
ANI MAL NO.	208	GROUP:	20 MG/KG/DAY FEMALE LIVER	SCHEDULED EUTHANASIA 10/ 1/98 LACTATION DAY 21 GROSS: TAN AREA(S) AMENIA AND LEFT LODGE TWO EACH ADDROVIMMERTY O 2 V O 1	Б
			UTERINE HORNS	GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 5, 8	M P
ANI MAL NO.	218	GROUP:	20 MG/KG/DAY FEMALE LUNGS	SCHEDULED EUTHANASIA 10/3/98 LACTATION DAY 21 GROSS: MOTTLED	Ф
			TUNGS	GROSS: FOCI ALL LOBES: DAKA KED AND KED ALL LOBES: MITTIDIE: DINDOLNY: BOTH TAN AND BLACK	Ы
			UTERINE HORNS	SCARS (LEFT, RIGHT)	Ь
ANI MAL NO.	239	GROUP:	20 MG/KG/DAY FEMALE	SCHEDULED EUTHANASIA 10/ 1/98 LACTATION DAY 21 GROSS: FOCT	Δ
		 		ALL LOBES; MULTIPLE; UP TO 0.2 CM IN DIAMETER; TAN	1

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

12	GRADE	Ъ	Ы	ď	Ь	Д	Ь	Ь	Ь	Ы	Ь	Ь	А
APPENDIX S A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	GROSS: IMPLANTATION SCARS (LEFT, RIGHT)	GROSS: HAIRCOAT - HAIRLOSS FOREPAWS	SCHEDULED EUTHANASIA 10/3/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 0,9	SCHEDULED EUTHANASIA 10/ 1/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT)	GROSS: HA	SCHEDULED EUTHANASIA 10/4/98 LACTATION DAY 21 GROSS: CONTENT ABNORMAL TIETIAL DED MICCID MATERIAL MIXED WITH DICESTA	GROSS: RE	GROSS: MOTATION OF SERVICE AND	ALL LOBES: DAKK KED AND KED GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 8, 9	a SCHEDULED EUTHANASIA 9/16/98 GESTATION DAY 25 GROSS: RETAINED FETUS(ES) - (LEFT, RIGHT) O 1. MAITE FETUS APPEADS MODDING OFFICALLY NORMAL EVITEDMALLY	GROSS: GF	SCHEDULED EUTHANASIA 10/3/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 7,7
		(CONTINUED) UTERINE HORNS	EXT. APPEARANCE	GROUP: 20 MG/KG/DAY FEMALE UTERINE HORNS	GROUP: 20 MG/KG/DAY FEMALE UTERINE HORNS	EXT. APPEARANCE	200 GROUP: 30 MG/KG/DAY FEMALE SMALL INTESTINE	SMALL INTESTINE	LUNGS	UTERI NE HORNS	GROUP: 30 MG/KG/DAY FEMALE UTERINE HORNS	GENERAL COMMENT	GROUP: 30 MG/KG/DAY FEMALE UTERINE HORNS
3472.3 ., INC.		239		241	242		200				204		207
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.		ANI MAL NO.	ANI MAL NO.		ANI MAL NO.				ANI MAL NO.		ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT a EUTHANIZED ON POST-BREEDING DAY 25 (FAILED TO DELIVER AND WAS EUTHANIZED 25 DAYS AFTER EVIDENCE OF MATING WAS DETECTED).

SLI STUDY NO.: CLIENT: NIPERA,	3472. 3 INC.	~	A ONE- GENERATI ON 1 WI TH INDI VI DUAI	APPENDIX S A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	PAGE 13
				SCHEDULED EUTHANASIA	GRADE
ANI MAL NO.	212 GR	GROUP:	30 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/2/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 7, 11	ď
ANI MAL NO.	217 GR	GROUP:	30 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/3/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 7,9	<u>a</u>
ANIMAL NO.	222 GR	GROUP:	30 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/7/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT)	А
			UTERINE HORNS	GROSS: RESORPTION(S) (LEFT, RI GHT) 0, 1	Q,
ANI MAL NO.	230 GR	GROUP:	30 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/3/98 LACTATI ON DAY 21 GROSS: IMPLANTATI ON SCARS (LEFT, RIGHT) 6 7	А
			EXT. APPEARANCE	GROSS: HAI RCOAT - HAI RLOSS FORELI MBS	ď
ANI MAL NO.	240 GR	GROUP:	30 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/2/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 6, 9	<u>a</u>
ANI MAL NO.	194 GR	GROUP:	50 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/2/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 6, 9	<u>o</u> ,
ANI MAL NO.	199 GR	GROUP:	50 MG/KG/DAY FEMALE SKIN	SCHEDULED EUTHANASIA 10/ 3/98 LACTATI ON DAY 21 GROSS: SCABBING LEFT HI NDLI MB	<u>C</u>
			UTERINE HORNS	GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 6, 7	Ь

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

PAGE 14	GRADE	d	d	ď	CJ.	А	ď	ď	ď	G.
APPENDIX S A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	GROSS: HAI RCOAT - HAI RLOSS FORELI MBS AND LEFT HINDLI MB	SCHEDULED EUTHANASIA 10/2/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 10,8	SCHEDULED EUTHANASIA 10/2/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 6, 10	SCHEDULED EUTHANASIA 10/4/98 LACTATION DAY 21 GROSS: CONTENT ABNORMAL DUODENUM AND JEJUNUM, YELLOW MUCID MATERIAL MEXED WITH	DIGESTA: ILEUM, KED MUCULD MALEKIAL MIXED WITH DIGESTA GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 10, 4	SCHEDULED EUTHANASIA 10/5/98 LACTATION DAY 21 GROSS: NODULE(S)	GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 8, 8	SCHEDULED EUTHANASIA 9/26/98 STUDY DAY 54 GROSS: NONGRAVID AMMONI UM SULFI DE NEGATI VE	SCHEDULED EUTHANASIA 10/5/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 6, 10
m		(CONTI NUED) EXT. APPEARANCE	GROUP: 50 MG/KG/DAY FEMALE UTERINE HORNS	GROUP: 50 MG/KG/DAY FEMALE UTERINE HORNS	216 GROUP: 50 MG/KG/DAY FEMALE SMALL INTESTINE	UTERINE HORNS	226 GROUP: 50 MG/KG/DAY FEMALE LUNGS	UTERINE HORNS	GROUP: 50 MG/KG/DAY FEMALE a UTERINE HORNS	GROUP: 50 MG/KG/DAY FEMALE UTERINE HORNS
SLI STUDY NO.: 3472.: CLIENT: NIPERA, INC.		ANI MAL NO. 199	ANI MAL NO. 202	ANI MAL NO. 215	ANI MAL NO. 216		ANI MAL NO. 226		ANI MAL NO. 227	ANI MAL NO. 232

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT COMPLETION OF THE MATING PERIOD).

SLI STUDY NO.: CLI ENT: NI PERA,	3472. 3 INC.	8	A ONE-GENERATION WITH INDIVIDUA	APPENDIX S A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXARYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	PAGE 15
				SCHEDULED EUTHANASIA	GRADE
ANI MAL NO.	197	GROUP:	75 MG/KG/DAY FEMALE LUNGS	ı	d L
			UTERINE HORNS	ALL LUBES: MULITPLE: UP 10 0.2 CM DIAMETEK; IAN GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 8,7	Ь
ANI MAL NO.	210	GROUP:	75 MG/KG/DAY FEMALE UTERINE HORNS	SCHEDULED EUTHANASIA 10/4/98 LACTATION DAY 21 GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 5, 12	<u>a</u>
ANI MAL NO.	213	GROUP:	75 MG/KG/DAY FEMALE a THYROI D	SCHEDULED EUTHANASIA 9/14/98 LACTATION DAY 2 GROSS: PALE	Ь
			UTERINE HORNS	GROSS: IMPLANTATION SCARS (LEFT, RIGHT)	Ь
			EXT. APPEARANCE	GROSS: HAI RCOAT - DARK MATERIAL	Ь
			EXT. APPEARANCE	GROSS: HAIRCOAT - WET MATTING UROGENITAL AREA, DARK YELLOW; ANOGENITAL AREA, DARK GREEN	Д
ANI MAL NO.	220	GROUP:	75 MG/KG/DAY FEMALE KI DNEYS	VASIA 10/3/98 LACTATI	<u>a</u>
			UTERINE HORNS	RIGHI, COKITCAL SUKFACE; IHREE; U. 1 CM 10 U. 3 CM DIAMETEK; RAISED; EXTENDING INTO CORTEX GROSS: IMPLANTATION SCARS (LEFT, RIGHT)	Д.
			ABDOMINAL CAVITY	GROSS: ADHESION INVOLVING LEFT KIDNEY AND ADIPOSE TISSUE; CORTICAL SURFACE OF KIDNEY IN AREA OF ADHESION IS DEPRESSED	E P
ANI MAL NO.	228	GROUP:	75 MG/KG/DAY FEMALE LUNGS	SCHEDULED EUTHANASIA 10/3/98 LACTATION DAY 21 GROSS: MOTTLED ALL LOBES; RED AND DARK RED	ď
SOLI GERMANI ZED DIJE OF OTATI ITTERNATION OF STATES	OF THE	LIVEOT	1	GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT	1 1 1 1 1 1 1 1 1 1

a EUTHANIZED DUE TO TOTAL LITTER LOSS.

PAGE 16	GRADE	Ь	Ь	ď	Ь	Ь	Ы	Ь	Ь	Ь	Ч
APPENDIX S NE- GENERATION REPRODUCTION RANGE- FINDING STUDY IN RATS WITH NICKEL SULFATE HEXARYDRATE INDIVIDUAL FO GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	GROSS: FOCT	GROSS: IMPLANTATION SCARS (LEFT, RIGHT) 9, 8	E SCHEDULED EUTHANASIA 10/ 2/98 LACTATI ON DAY 21 GROSS: IMPLANTATI ON SCARS (LEFT, RIGHT) 5, 7	E SCHEDULED EUTHANASIA 10/3/98 LACTATI ON DAY 21 GROSS: IMPLANTATI ON SCARS (LEFT, RIGHT) 6, 11	E a SCHEDULED EUTHANASIA 9/13/98 LACTATION DAY 1 GROSS: PALE A11 1 ORFS	GROSS: ACCENTUATED LOBULAR MARKINGS ATT LORES	GROSS: PALE	GROSS: CONTENT ABNORMAL TISSUE MATTERIA! MIXED MITH BEDDISH, RROWN SOLID MATTERIA!	GROSS: PALE	GROSS: IN
A ONE-GENERAT INDIV		NUED) LUNGS	UTERINE HORNS	75 MG/KG/DAY FEMALE UTERINE HORNS	GROUP: 75 MG/KG/DAY FEMALE UTERINE HORNS	75 MG/KG/DAY FEMALE LIVER	LIVER	LUNGS	STOMACH	THYROI D	UTERINE HORNS
472. 3 NC.		228 (CONTI NUED)		235 GROUP:		5 GROUP:					
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		ANI MAL NO. 228		ANI MAL NO. 238	ANI MAL NO. 244	ANI MAL NO. 245					

a EUTHANIZED DUE TO TOTAL LITTER LOSS.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

SLI Study No. 3472.3

APPENDIX T

Individual F0 Implantation and Post-Implantation Loss Data

G = GRAVID NOTE: IMPLANTATION SCAR COUNT MINUS THE NUMBER OF LIVE PUPS (DAY 0) EQUALS POST-IMPLANTATION LOSS.

PAGE 1												
APPENDIX T A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO IMPLANTATION AND POST-IMPLANTATION LOSS DATA	POST- IMPLANTATI ON LOSS	0	1	0	0	0	2	0	0	0.4	0.7	~
A ONE-GENERATION REPRO WITH NICI INDIVIDUAL FO IMPLANT	NUMBER OF LIVE PUPS (DAY 0)	17	16	16	13	17	17	16	16	16.0	1.3	∞
	I MPLANTATI ON SCAR COUNT	17	17	16	13	17	19	16	16	16. 4	1.7	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 1: 0 MG/KG/DAY	PREGNANCY STATUS	192 G	196 G	206 G	219 G	221 G	231 G	233 G	237 G	MEAN	S. D.	N

G = GRAVID NOTE: IMPLANTATION SCAR COUNT MINUS THE NUMBER OF LIVE PUPS (DAY 0) EQUALS POST-IMPLANTATION LOSS.

PAGE 2													
APPENDIX T A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO IMPLANTATION AND POST-IMPLANTATION LOSS DATA		POST- IMPLANTATI ON LOSS	0	1	0	16	0	2	1	1	2.6	5.4	8
A ONE-GENERATION REPR WITH NIC INDIVIDUAL FO IMPLANT		NUMBER OF LIVE PUPS (DAY 0)	9	16	18	0	14	15	14	17	12. 5	6.2	&
	DAY	I MPLANTATI ON SCAR COUNT	9	17	18	16	14	17	15	18	15.1	3.9	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP Z: 10 MG/KG/DAY	PREGNANCY STATUS	188 G	195 G	224 G	229 G	234 G	236 G	238 G	243 G	MEAN	S. D.	Z

PAGE 3		
APPENDIX T A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO IMPLANTATION AND POST-IMPLANTATION LOSS DATA	POST- IMPLANTATI ON LOSS	1
A ONE-GENERATION REPRO WITH NICK INDIVIDUAL FO IMPLANTA'	NUMBER OF LIVE PUPS (DAY 0)	15 11 12 13 14 14 15 15 15 15 15 15 15 15 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18
	I MPLANTATI ON SCAR COUNT	15 16 16 13 17 16 9 16 9 18 2.6 8
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 3: 20 MG/KG/DAY	PREGNANCY STATUS	177 G 198 G 205 G 208 G 218 G 239 G 241 G 242 G MEAN S. D.

G = GRAVID NOTE: IMPLANTATION SCAR COUNT MINUS THE NUMBER OF LIVE PUPS (DAY 0) EQUALS POST-IMPLANTATION LOSS.

PAGE 4	APPENDIX T A ONE- GENERATI ON REPRODUCTI ON RANGE - FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO IMPLANTATI ON AND POST-IMPLANTATI ON LOSS DATA NUMBER OF LIVE POST-IMPLANTATI ON PUPS (DAY 0) LOSS 12 5 13 2 14 1 13.1 2.3	A ONE- GENERATI ON REPRO WITH NICK INDI VI DUAL FO IMPLANTA NUMBER OF LIVE PUPS (DAY 0) 12 a 12 a 12 13 14 13. 1	IMPLANTATI ON SCAR COUNT 17 a 14 18 16 15 15	SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 4: 30 MG/KG/DAY PREGNANCY STATUS 200 G 204 G 207 G 212 G 217 G 217 G 217 G 222 G 230 G 240 G
	2.0). V.	I. ,	S. D.
	2.0	2.0	1. 7	S. D.
	2.3	13. 1	15.4	MEAN
		14	15	240 G
	>	27	10	2002
	0	13	13	230 G
	ıc	10	15	222 G
		15	16	217 G
	1			2
	2	16	18	212 G
	2	12	14	207 G
	В	В	а	204 G
	5	12	17	200 G
	POST-1MPLANTATION LOSS	NUMBER OF LIVE PUPS (DAY 0)	I MPLANTATI ON SCAR COUNT	PREGNANCY STATUS
			DAI 	KUUF 4: JU INA/ NA/
	ATION AND POST-IMPLANTATION LOSS DATA	NDIVIDUAL FO IMPLANTA		DOI: 90 MC /UC /
	KEL SULFATE HEXAHYDRATE	WI TH NI CK		LI ENT: NI PERA, INC
PAGE 4	DUCTION RANGE-FINDING STUDY IN RATS	A ONE- GENERATI ON REPRO		LI STUDY NO.: 347
	APPENDI X T			

G = GRAVID NOTE: IMPLANTATION SCAR COUNT MINUS THE NUMBER OF LIVE PUPS (DAY 0) EQUALS POST-IMPLANTATION LOSS. a NO IMPLANTATION SCARS WERE RECORDED, ONE MALE FETUS WAS RETAINED IN UTERO.

PAGE 5		
APPENDIX T A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO IMPLANTATION AND POST-IMPLANTATION LOSS DATA	POST- I MPLANTATI ON LOSS	6 1 1 1 1 2.0 7
A ONE-GENERATION REPRO WITH NICK NDIVIDUAL FO IMPLANTA	NUMBER OF LIVE PUPS (DAY 0)	12 12 16 13 12 12 15 15 7
	I MPLANTATI ON SCAR COUNT	15 18 18 16 16 16 15 16 17 7
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 5: 50 MG/KG/DAY	PREGNANCY	194 G 199 G 202 G 215 G 216 G 226 G 232 G NEAN S. D.

G = GRAVID NOTE: IMPLANTATION SCAR COUNT MINUS THE NUMBER OF LIVE PUPS (DAY 0) EQUALS POST-IMPLANTATION LOSS.

PAGE 6													
APPENDIX T A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FO IMPLANTATION AND POST-IMPLANTATION LOSS DATA		POST- I MPLANTATI ON LOSS	9	3	9	3	2	-	9	∞	4.8	2.3	∞
A ONE-GENERATION REPROI WITH NICKI INDIVIDUAL FO IMPLANTAT		NUMBER OF LIVE PUPS (DAY 0)	6	14	6	14	12	111	11	0	10.0	4.5	∞
<u>د</u>	AY	I MPLANTATI ON SCAR COUNT	15	17	15	17	17	12	17	œ	14.8	3.2	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 6: 75 MG/KG/DAY	PREGNANCY STATUS	197 G	210 G	213 G	220 G	228 G	235 G	244 G	245 G	MEAN	S. D.	N

G = GRAVID NOTE: IMPLANTATION SCAR COUNT MINUS THE NUMBER OF LIVE PUPS (DAY 0) EQUALS POST-IMPLANTATION LOSS.

SLI Study No. 3472.3

APPENDIX U

Individual F1 Pup Viability

	1 1 1	! ! !			
1	1	! !			
PAGE	21		4444	1444	3 31
<u>a</u>	DAY	W	4440	0 4 4 4	4 31
	14	- -	4444	1 4 4 4	31
	DAY 14	W	4440	0 4 4 4	4 31
	7	<u> </u>	4444	1 4 4 4	3
	DAY	W	4444	* 4 4 4	32
RATS	c I ON 4	H	4444	1 4 4 4	4 32
DY IN	AFTER SELECTI ON DAY 4		4444	1 4 4 4	4 32
G STU	1	<u> </u>	L	o & & o	5
FI NDI NG AHYDRATE 31 LI TY	BEFORE SELECTI ON DAY 4	W	0 8 0 4	. 60 8 1	l.1 65
UANGE-FINE HEXAH)			L	o	5 61
APPENDIX U UCTION RAN L SULFATE AL F1 PUP	DAY	W	0 & 0 u	-	1 65
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP VIABILITY		1 1 1 1 1 1 1 1			1
ENERATI (TOTAL	17 16 16	13 17 16	16
ONE- GI	BLE		001 89 100 100	8888	100
А	NO. VIABLE DAY 0	<u></u>	8 /8 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2	8/8 11/11 8/8	5/5 10 63/64
	NO	%	1000	8 6 6 6	100
		X	2897	0008	11/11 10
3472.3 INC. KG/DAY	AD 0	n	0000	0000	
3 , I /KG	DE AY	M F U	0 1 0	0000	0 0
NO.: I PERA O MG.	NO. DEAD DAY 0	_ W	0000	0000	0 0
SLI STUDY NO.: 3472. CLIENT: NIPERA, INC. GROUP 1: 0 MG/KG/DAY		DAM NO.	192 196 206	221 221 231 233	237 TOTAL

M = MALE, F = FEMALE, U = UNDETERMINED NOTE: NUMBER DEAD = TOTAL PUPS FOUND DEAD, MI SSING AND/OR CANNIBALIZED.

	1	;									
82	1 1 1 1	! ! !									
PAGE	21	<u> </u>	4	4	4	0	4	4	4	4	28
Д	DAY	M	. 2	4	4	0	4	4	4	4	26
	14	<u></u>	4	4	4	0	4	4	4	4	88
	DAY 14	×	2	4	4	0	4	4	4	4	56
	7	Т	- 4	4	4	0	4	4	4	4	88
	DAY	W	2	4	4	0	4	4	4	4	56
RATS	.T. 0N	<u></u>	4	4	4	0	4	4	4	4	88
JDY IN	AFTER SELECTI ON DAY 4			4	4	0	4	4	4	4	97
NG STI ATE Y	RE TI 0N	<u></u>	4	∞	10	0	7	7	10	∞	54
GE- FI NDI HEXAHYDR VI ABI LI T	BEFORE SELECTI ON DAY 4	W	2	∞	∞	0	7	∞	4	6	46
X U RANGE- TE HE UP VI	1	<u></u>	4	∞	10	0	7	7	10	∞	54
APPENDIX U UCTION RAN L SULFATE AL F1 PUP	DAY	. W	2	∞	∞	0	7	∞	4	6	46
APPENDIX U I ON REPRODUCTI ON RANGE-FINDING WI TH NI CKEL SULFATE HEXAHYDRATI I NDI VI DUAL F1 PUP VI ABI LI TY		! !									
APPENDIX U GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP VIABILITY			· ~	~	~	_	_	١.	_		001
ENERAT		TOTAL	9	16	18	_	14	15	14	17	10
A ONE-G	BLE	%	/ 2 100 4/ 4 100	100	100	0	100	88	100	100	28
А	NO. VIABLE DAY 0	<u> </u>	4/4	8/8	10/10	0/3	1/7	2/ 8	10/10	8/8	54/58
	NO	- %	100	100	100	0	100	88	100	100	52
		W	2/2	8 /8	8 /8	0/ 2	1/ 1	8/9	4/4	6 /6	46/52
472. 3 NC. G/DAY	AD 0	MFU	. 0	0	0	8	0	0	0	0	~
3 A, I	NO. DEAD DAY 0	<u> </u>	0	0			0		0	0	4
NO.: IPERA 10 N	NO.		0	0	0	5	0	Т	0	0	9
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 2: 10 MG/KG/DAY		DAM NO.	188	195	224	229	234	236	238	243	TOTAL

M = MALE, F = FEMALE, U = UNDETERMINED NOTE: NUMBER DEAD = TOTAL PUPS FOUND DEAD, MISSING AND/OR CANNIBALIZED.

			! !									
က		 	!									
PAGE		21	<u> </u>	0	4	4	4	4	4	75	4	29
<u>a</u>		DAY	×	0	4	4	4	4	4	~	4	26
		14	H	0	4	4	4	4	4	5	4	53
		DAY 14	W	0	4	4	4	4	4	8	4	26
		7	<u>.</u>	4	4	4	4	4	4	5	4	33
		DAY	W	4	4	4	4	4	4	8	4	30
N RATS		AFTER SELECTI ON DAY 4		4	4	4	4	4	4	5	4	33
UDY II		AFTER SELECTI DAY 4		4	4	4	4	4	4	8	4	30
DING ST DRATE ITY		BEFORE SELECTI ON DAY 4	- -	- 6	7	7	7	7	7	5	9	22
E- FI ND: (EXAHYD) (I ABI LI		BEFORE SELECTI O	W	5	∞	∞	9	4	6	~	9	48
RANGE ATE HE		1	F	- 6	7	7	7	7	7	2	7	26
APPENDIX U UCTION RAN L SULFATE AL F1 PUP		DAY	Z	5	∞	œ	9	4	6	2	7	49
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI PUP VIABILITY			T									9
ENERAT			TOTAI	14	15	15	13	12	16	7	14	106
ONE- G		BLE	%	06	100	88	100	73	100	100	100	89
A		NO. VIABLE DAY 0	F	9/10	7/7	2/ 8	7/7	8/11	1/1	5/5	1/1	57/62
		ž		5 100		8 100						49/54
			X	5/								49/
3472. 3 INC.	20 MG/KG/DAY	NO. DEAD DAY O	M F U	!		0						0
i		DAY	T	1		-						5
Y NO.: NI PERA	20 1	NO.	. W	0	0	0	0	2	0	1	8	5
SLI STUDY NO.: CLI ENT: NI PERA,	GROUP 3:		DAM NO.	177	198	205	208	218	239	241	242	TOTAL

M = MALE, F = FEMALE, U = UNDETERMINED NOTE: NUMBER DEAD = TOTAL PUPS FOUND DEAD, MISSING AND/OR CANNIBALIZED.

4	1 1 1 1	1 1 1 1	
PAGE	21	<u> </u>	. 444444 8
PA	DAY 3		444444
	14	 - - - -	- 4 4 4 4 4 4 4 8 8
	DAY 14	W.	444444
	7	- - -	
	DAY	Z	. 444444 . 8
I RATS	TT ON		. 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8
UDY IN	AFTER SELECTI ON DAY 4	W	444444
ING ST RATE IY	BEFORE SELECTI ON DAY 4	; ; ; ;	5 4 10 10 7 7 4
FI ND] XAHYDI ABI LI C	BEFORE SELECTI O	E	7 8 5 7 7 44
IX U RANGE ATE HE PUP VI			5 4 10 10 7 7
APPENDIX U UCTION RAN L SULFATE AL F1 PUP	DAY	E	7
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI PUP VIABILITY		TOTAL	12 12 16 10 13 14
A ONE-GE	NO. VIABLE DAY 0	F	5/5 100 4/4 100 10/10 100 10/10 100 4/7 57 7/7 100 7/8 88 47/51
	NO. D		7/ 8 88 8/10 80 6/ 6 100 1 5/ 6 83 1 6/ 8 75 6/ 6 100 7/ 7 100
3472.3 INC. /KG/DAY	AD 0	n	İ
: 3, tA, 11 MG/KG	NO. DEAD DAY 0	M F U	0000001 4
SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC. GROUP 4: 30 MG/KG/DAY	ON	DAM NO. M	200 1 207 2 212 0 217 1 222 2 230 0 240 0

M = MALE, F = FEMALE, U = UNDETERMINED NOTE: NUMBER DEAD = TOTAL PUPS FOUND DEAD, MISSING AND/OR CANNIBALIZED.

ıς	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1		
	1	1		1
PAGE	DAY 21	, <u>14</u> ,	1	1
	/Q	W		
	14			
	DAY 14	×		
	7	<u></u>		
	DAY			
I RATS	TR TI 0N 4	<u> </u>		
UDY IN	AFTER SELECTI ON DAY 4	W .		
ING ST RATE IY	BEFORE SELECTI ON DAY 4	<u> </u>	6 9 8 8 6 6 6 74	1
- FI NDI XAHYDI ABI LI 1	BEFORE SELECTI C DAY 4	×	34	
X U RANGE VTE HE	1	<u> </u>	6 9 8 8 6 6 6 54	
APPENDIX U UCTION RAN L SULFATE AL F1 PUP	DAY	W	34 5 6 7 4 7 8 9 3 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
APPENDIX U A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP VIABILITY		TOTAL	12 12 12 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	
3- GEN	 	. %	55 0 0 0 0 0 0	
A ONI	NO. VIABLE DAY 0	 	6, 8, 75 10/10 100 9/ 9 100 8/ 8 100 6/ 6 100 6/ 6 100 10/10 100	
	 NO. V DAY	%	55 6/ 0 10/ 0 9/ 0 8/ 0 6/ 0 10/ 55	
	1 1 1	 	3/ 4 75 2/ 2 100 7/ 7 100 7/ 7 100 6/ 6 100 6/ 6 100 5/ 5 100	
		\	3,4 2,2 2 1,7 7 1,7 7 1,	
3472.3 INC. /KG/DAY	AD 0	n	0000000	
: 3 A, I.	NO. DEAD DAY 0	M F U	000000 8	
7 NO. T PER. 50 }	NO.	. X	2 000100	
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 5: 50 MG/KG/DAY		DAM NO.	194 199 202 215 215 226 232 70TAL	

M = MALE, F = FEMALE, U = UNDETERMINED NOTE: NUMBER DEAD = TOTAL PUPS FOUND DEAD, MISSING AND/OR CANNIBALIZED.

		!	:									
9		' 										
PAGE		21	<u></u>	4	က	0	4	4	က	4	0	22
P/		DAY	\	4	5	0	4	4	5	4	0	26
		14	<u> </u>	4	က	0	4	4	က	4	0	22
		DAY 14	 \overline	4	5	0	4	4	2	4	0	26
		7	<u></u>	4 -	က	0	4	4	က	4	0	22
		DAY	\	4	5	0	4	4	5	4	0	26
N RATS		AFTER SELECTI ON DAY 4	<u></u>	4	က	0	4	4	က	4	0	22
UDY II		AFTER SELECTI DAY 4	W	4	75	0	4	4	5	4	0	56
DING ST DRATE ITY		BEFORE SELECTI ON DAY 4	<u>.</u>	4	က	0	∞	7	က	5	0	30
FI ND] XAHYD] ABI LI J		BEFORE SELECTI C DAY 4	W	5	11	0	9	5	∞	9	0	41
IX U RANGE ATE HE PUP VI			H	- 4	က	1	∞	7	က	2	0	31
APPENDIX U RODUCTION RAN CKEL SULFATE IDUAL F1 PUP		DAY	 \B	5	11	4	9	5	œ	9	0	45
A ONE-GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI PUP VIABILITY			TOTAL	6	14	6	14	12	11	11	0	80
NE- GE		TE TE	%	100	100	20	80	28	100	71	0	23
A 0		NO. VIABLE DAY 0	ഥ	4/4	3/3	2/4	8/10	6 //	3/3	5/7	0/2	32/42
		NO.	%	83	85	78	100	63	100	86	0	0
		1 1 1 1 1	- W	5/ 6	11/13	6 //	9 /9	2/8	8 /8	2 /9	0/3	48/ 60
3472. 3 INC.	KG/DAY	EAD 0	n	!					0			1
·· '	MG/	NO. DEAD DAY 0	M F U						0 (12 10 1
NO. I PER	75	0N	. ⊠	1	8	82	0	က	0	_	3	12
SLI STUDY NO.: CLI ENT: NI PERA,	GROUP 6: 75 MG/KG/DAY		DAM NO.	197	210	213	220	228	235	244	245	TOTAL

M = MALE, F = FEMALE, U = UNDETERMINED NOTE: NUMBER DEAD = TOTAL PUPS FOUND DEAD, MI SSING AND/OR CANNIBALIZED.

SLI Study No. 3472.3

APPENDIX V

Individual F1 Pup Observations during Lactation (Positive Findings)

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE- GENERAT I NDI VI DU	I ON REP WI TH NI JAL F1 P	APPENDIX V A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP OBSERVATIONS DURING LACTATION	PAGE 1
GROUP 1: 0 MG/KG/DAY)	(POSITIVE FINDINGS)	
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY
192	8		CULLED ON SCHEDULED DAY	4
	4	×	CULLED ON SCHEDULED DAY	4
	īΟ	¥	SUBCUTANEOUS HEMORRHAGE(S)	0
			CULLED ON SCHEDULED DAY	4
	7	W	CULLED ON SCHEDULED DAY	4
	∞	M	CULLED ON SCHEDULED DAY	4
	10	щ	COOL TO THE TOUCH	0
			PALE IN COLOR	0
			SUBCUTANEOUS HEMORRHAGE(S)	0
			ABDOMI NAL REGION, RI GHT LATERAL HEAD	•
	,	ı	MI SSI NG - PRESUMED CANNI BALI ZED	(
	11	ᅜ	TAIL TIP ABSENT	0
			SUBCUTANEOUS HEMORRHAGE(S)	0
	1.0	[1	CHITED ON SCHEDITED DAY	
	71 7	4 6	SCHEDULED	11 •
	13	I 4	SCHEDULED	4
	15	ĭ	CULLED ON SCHEDULED DAY	4
196		ĽΤ	FOUND DEAD	0
	· 8	×	SUBCUTANEOUS HEMORRHAGE(S)	0
			FACI AL AREA	
			CULLED ON SCHEDULED DAY	4
	က	M	SUBCUTANEOUS HEMORRHAGE(S)	0
			FACIAL AREA	_
	9	≥	SCHEDILED	4 4
	» ∞	Z	ON SCHEDULED	4

CROUP 1: 0 MC/MC/DAY PUP NO. SEX PUP GROSS OBSERVATION	SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENERATI I I NDI VI DU	ION REPI WITH NICAL FI	APPENDIX V A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP OBSERVATIONS DURING LACTATION	PAGE 2
10	1: 0 MG/KG/DAY			OSI TI VE FINDI NGS)	
10	4 NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY
SCAB (S)	961	10		SUBCUTANEOUS HEMORRHAGE(S)	0
TAIL TIP ABSENT				FACIAL AREA	C
TAIL TIP ABSENT					0
SCAB(S)				TAIL TIP ABSENT	0
TAIL TIP CULLED ON SCHEDULED DAY				SCAB(S)	4
TAIL TIP ABSENT				TAIL TIP	
11 F SUBCUTANEOUS HEMORRHAGE(S) SCAB(S) VENTRAL THORACIC 12 F SUBCUTANEOUS HEMORRHAGE(S) FACIAL AREA COOL TO THE TOUCH CULLED ON SCHEDULED DAY ABDOM NAL REGION, LEFT HINDLIMB MISSING - PRESUMBO CANNI BALIZED 15 F CULLED ON SCHEDULED DAY 4 M CULLED ON SCHEDULED DAY 5 M CULLED ON SCHEDULED DAY 6 M CULLED ON SCHEDULED DAY 7 CULLED ON SCHEDULED DAY 8 M CULLED ON SCHEDULED DAY 9 M PURPLE IN COLLAR 11 FOR CULLED ON SCHEDULED DAY 12 FOR CULLED ON SCHEDULED DAY 13 FOR CULLED ON SCHEDULED DAY 14 M CULLED ON SCHEDULED DAY 15 FOR CULLED ON SCHEDULED DAY 16 FOR CULLED ON SCHEDULED DAY 17 FOR CULLED ON SCHEDULED DAY 18 FOR CULLED ON SCHEDULED DAY 19 FOR PURPLE IN COLLAR 10 FOR PURPLE IN COLLAR 11 FOR COLLED ON SCHEDULED DAY 11 FOR PURPLE IN COLLAR 12 FOR PURPLE IN COLLAR 13 FOR PURPLE IN COLLAR 14 FOR PURPLE IN COLLAR 15 FOR PURPLE IN COLLAR 16 FOR PURPLE IN COLLAR 17 FOR PURPLE IN COLLAR 18 FOR PURPLE IN COLLAR 19 FOR PURPLE IN COLLAR 10 FOR PURPLE IN COLLAR 17 FOR PURPLE IN COLLAR 18 FOR PURPLE IN COLLAR 19 FOR PURPLE IN COLLAR 10 FOR PURPLE IN COLLAR				CULLED ON SCHEDULED DAY	4
11 F SUBCUTANEOUS HEMORRHAGE(S)				TAIL TIP ABSENT	4
SCAB (S) VENTRAL THORACIC 12 F SUBCUTANEOUS HEMORRHAGE(S) FACIAL AREA COOL TO THE TOULED ON SCHEDULED DAY 13 F SUBCUTANEOUS HEMORRHAGE(S) ABDOMI NAL REGI ON, LEFT HINDLI MB MI SSING - PRESUMED CANNI BALI ZED 15 F CULLED ON SCHEDULED DAY 4 M CULLED ON SCHEDULED DAY 5 M CULLED ON SCHEDULED DAY 6 M CULLED ON SCHEDULED DAY 7 CULLED ON SCHEDULED DAY 8 M CULLED ON SCHEDULED DAY 9 M PURPLE IN COLOR 11 FN ON SCHEDULED DAY 11 FN ON SCHEDULED DAY 12 CULLED ON SCHEDULED DAY 13 CULLED ON SCHEDULED DAY 14 M CULLED ON SCHEDULED DAY 15 FN CULLED ON SCHEDULED DAY 16 FN CULLED ON SCHEDULED DAY 17 FN ON SCHEDULED DAY 18 CULLED ON SCHEDULED DAY 19 FN CULLED ON SCHEDULED DAY 10 FN CULLED ON SCHEDULED DAY 11 FN ON SCHEDULED DAY 12 FN CULLED ON SCHEDULED DAY 13 FN CULLED ON SCHEDULED DAY 14 FN CULLED ON SCHEDULED DAY 15 FN CULLED ON SCHEDULED DAY 16 FN CULLED ON SCHEDULED DAY 17 FN CULLED ON SCHEDULED DAY 18 FN CULLED ON SCHEDULED DAY 19 FN CULLED ON SCHEDULED DAY 10 FN CULLED ON SCHEDULED DAY 10 FN CULLED ON SCHEDULED DAY 11 FN CULLED ON SCHEDULED DAY 12 FN CULLED ON SCHEDULED DAY 13 FN CULLED ON SCHEDULED DAY 14 FN CULLED ON SCHEDULED DAY 15 FN CULLED ON SCHEDULED DAY 16 FN CULLED ON SCHEDULED DAY 17 FN COLOR		11	ᄺ	SUBCUTANEOUS HEMORRHAGE(S)	0
VEWTRAL THORACIC				SCAB(S)	4
12 F SUBCUTANEOUS HEMORRHAGE(S)				VENTRAL THORACIC	
COOL TO THE TOUCH CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY ABDOMI NAL REGI ON, LEFT HI NDLI MB MI SSI NG - PRESUMED CANNI BALI ZED MI SSI NG - PRESUMED DAY TOULLED ON SCHEDULED DAY MI CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY MI CULLED ON SCHEDULED DAY CULLED CON SCHEDULED DAY CULLE		12	Г	SUBCUTANEOUS HEMORRHAGE(S) FACTAL ARFA	0
CULLED ON SCHEDULED DAY 13 F SUBCUTANEOUS HEMORRHAGE(S) ABDOMI NAL REGI ON. LEFT HINDLIMB MI SSI NG - PRESUMED CANNI BALI ZED MI SSI NG - PRESUMED DAY 1 M CULLED ON SCHEDULED DAY 4 M CULLED ON SCHEDULED DAY 5 M CULLED ON SCHEDULED DAY 6 M CULLED ON SCHEDULED DAY 7 CULLED ON SCHEDULED DAY 8 M CULLED ON SCHEDULED DAY 9 M PURPLE IN COLOR CITITED ON SCHEDULED DAY 9 CULLED ON SCHEDULED DAY				COOL TO THE TOUCH	4
13 F SUBCUTANEOUS HEMORRHAGE(S) ABDOMI NAL REGI ON, LEFT HI NDLI MB MI SSI NG - PRESUMED CANNI BALI ZED 15 F CULLED ON SCHEDULED DAY 4 M CULLED ON SCHEDULED DAY 5 M CULLED ON SCHEDULED DAY 6 M CULLED ON SCHEDULED DAY 7 CULLED ON SCHEDULED DAY 8 CULLED ON SCHEDULED DAY 9 M PURPLE IN COLOR				CULLED ON SCHEDULED DAY	4
ABDOMI NAL REGI ON LEFT HINDLIMB		13	ഥ	SUBCUTANEOUS HEMORRHAGE(S)	0
15 F CULLED ON SCHEDULED DAY 1 M CULLED ON SCHEDULED DAY 4 M CULLED ON SCHEDULED DAY 5 M CULLED ON SCHEDULED DAY 6 M CULLED ON SCHEDULED DAY 7 CULLED ON SCHEDULED DAY 8 M CULLED ON SCHEDULED DAY 9 M PURPLE IN COLOR				ABDOMINAL REGION, LEFT HINDLIMB	-
15 F CULLED ON SCHEDULED DAY 1 M CULLED ON SCHEDULED DAY 4 M CULLED ON SCHEDULED DAY 5 M CULLED ON SCHEDULED DAY 6 M CULLED ON SCHEDULED DAY 7 CULLED ON SCHEDULED DAY 9 M PURPLE IN COLOR		1	ţ	MI SSI NG - PRESUMED CANNI BALL LED	٦,
1 M CULLED ON SCHEDULED DAY 4 M CULLED ON SCHEDULED DAY 5 M CULLED ON SCHEDULED DAY 6 M CULLED ON SCHEDULED DAY 9 M PURPLE IN COLOR CITITED ON SCHEDULED DAY		15	Ξ,		4
M CULLED ON SCHEDULED DAY M CULLED ON SCHEDULED DAY M CULLED ON SCHEDULED DAY M PURPLE IN COLOR CHITTED ON SCHEDULED DAY	90:	1	M	ON SCHEDULED	4
M CULLED ON SCHEDULED DAY M CULLED ON SCHEDULED DAY M PURPLE IN COLOR CHITED ON SCHEDUIED DAY		4	M	ON SCHEDULED	4
M CULLED ON SCHEDULED DAY M PURPLE IN COLOR		ıΩ ·	Σį	ON SCHEDULED	4
M PURPLE IN COLOR		တ (≅ ;	ON SCHEDULED	4 (
		ກ	Z	IN COLOR	0 <

SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.	A ONE-GENERAT I NDI VI DU	I ON REP WITH NI AL F1 P	APPENDIX V GENERATI ON REPRODUCTI ON RANGE- FI NDING STUDY IN RATS WITH NI CKEL SULFATE HEXAHYDRATE NDI VI DUAL F1 PUP OBSERVATI ONS DURI NG LACTATI ON	PAGE 3	
GROUP 1: 0 MG/KG/DAY			(POSI TI VE FINDINGS)		
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY	! ! !
206	10		NO.	4	
	14	ഥ	ON	4	
	16	ഥ	CULLED ON SCHEDULED DAY	4	
219	1	M	SUBCUTANEOUS HEMORRHAGE(S)	0	
			LEFT LATERAL HEAD		
	4	M	CULLED ON SCHEDULED DAY	4	
	2	M	SMALL IN SIZE	0	
				0 1	
			CONSTRICTED AREA(S)	7	
			FOIND DEAD	10	
	9	ΙŦ	CONSTRICTED AREA(S)	7	
			MID TAIL		
			CONSTRICTED AREA(S)	14	
			MI D- LATERAL TAIL		
			CONSTRICTED AREA(S)	21	
	O	[MID TAIL	c	
	•	4	SUBCULANEUUS HEMDRKHAGE(S) LEFT LATFRAL AND VENTRAL HEAD	O	
			CULLED ON SCHEDULED DAY	4	
	10	ഥ	CULLED ON SCHEDULED DAY	4	
	111	ഥ	CULLED ON SCHEDULED DAY	4	
	13	ഥ	CULLED ON SCHEDULED DAY	4	
221	_	Σ	CHILED ON SCHEDIILED DAY	4	
1	- en	Ξ×	ON SCHEDULED	. 4	
	4	M	ON SCHEDULED	4	

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENERAT I NDI VI DU	TION REP WITH NI JAL F1 P	APPENDIX V A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI PUP OBSERVATIONS DURING LACTATION	PAGE 4
GROUP 1: 0 MG/KG/DAY)	(POSITIVE FINDINGS)	
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY
221	∞	W	ON SCHEDULED	4
	6	Z [SCHEDULED	4 .
	10 14	ı Iı	CULLED ON SCHEDULED DAY	4 4
	15	伍	ON SCHEDULED	4
	17	দ	CULLED ON SCHEDULED DAY	4
231	1	M	HAI RLOSS SI 1 CHT	14
	2	M	CULLED ON SCHEDULED DAY	4
	3	M	HAIRLOSS	14
	_	M	SLIGHT	71
	ř	ı	SLIGHT	*
	ιO	M	HAIRLOSS	14
	9	M	CULLED ON SCHEDULED DAY	4
	7	伍	HAIRLOSS	14
	o		SELGHI	
	ာတ	i [I	CULLED ON SCHEDULED DAY	+ 4
	10	, II,		14
			SLI GHT	
	11	ᅜ	CULLED ON SCHEDULED DAY	4:
	12	4	HAI KLUSS SI I CHT	14
	13	দ	SCHEDULED	4
	14	ī	CULLED ON SCHEDULED DAY	4

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENERAT INDIVIDU	I ON REP WITH NI AL F1 P	APPENDIX V GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NDIVIDUAL FI PUP OBSERVATIONS DURING LACTATION	PAGE 5	
GROUP 1: 0 MG/KG/DAY)	(POSITIVE FINDINGS)		
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY	! !
231	15	, , , , , , , ,	CULLED ON SCHEDULED DAY HAIRLOSS STIGHT	14	1 1
	17	ഥ	CULLED ON SCHEDULED DAY	4	
233	2 1	M		4 4	
	9	Z Z	CULLED ON SCHEDULED DAY SCAB(S)	4 4	
			RI GHT HINDLIMB CULLED ON SCHEDULED DAY	4	
	∞	ഥ	SUBCUTANEOUS HEMORRHAGE(S) TAIL TIP	0	
			SCAB(S) TAIL TIP	4	
			SCAB(S) TAIL TIP	7	
	10	ഥ	CULLED ON SCHEDULED DAY	4	
	11	ᅜᅜ	CULLED ON SCHEDULED DAY SCAB(S)	4 4	
	R.	•	HT HINDLIMB	•	
	14 15	ᅜᅜ	CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY	4 4	
237	1	M	SUBCUTANEOUS HEMORRHAGE(S)	0	
	N	M	FACIAL AKEA CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY	4 4	

APPENDIX V 3472.3 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE , INC. INDIVIDUAL F1 PUP OBSERVATIONS DURING LACTATION	/KG/DAY (POSITIVE FINDINGS)	PUP NO. SEX PUP GROSS OBSERVATION LACTATION DAY	3 M CULLED ON SCHEDULED DAY	7 M CULLED ON SCHEDULED DAY 4	8 M CULLED ON SCHEDULED DAY 4	9 M CONSTRICTED AREA(S) 7	DISTAL TAIL	CONSTRICTED AREA(S) 14	DISTAL TAIL	CONSTRICTED AREA(S) 21	DISTAL TAIL	10 M CULLED ON SCHEDULED DAY 4	M	12 F CULLED ON SCHEDULED DAY 4	щ	APPEARED OTHERMS SE NORMAI	
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 1: 0 MG/KG/DAY	DAM NO.	237														

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENERATION R WITH INDIVIDUAL F1	TON REP WITH NI AL F1 P	APPENDIX V GENERATI ON REPRODUCTI ON RANGE- FI NDING STUDY IN RATS WI TH NI CKEL SULFATE HEXAHYDRATE NDI VI DUAL F1 PUP OBSERVATI ONS DURI NG LACTATI ON	PAGE 7
GROUP 2: 10 MG/KG/DAY		Û	(POSI TI VE FINDINGS)	
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY
195		W	SUBCUTANEOUS HEMORRHAGE(S)	0
	c	×	TAIL CULLED ON SCHEDULED DAY CULLIANPOLIS HEMDDHACE(S)	4 0
	4	IAI	SUBCOLANEOUS HEMORARIAGE(S) RI GHT LATERAL HEAD	Þ
	က	M	LACERATI ON(S)	0
			ABDOMI NAL REGION	~
	5	M	SCHEDULED	4 4
	7	M	ON SCHEDULED	4
	6	ഥ	ON SCHEDULED	4
	12	ᅜ	ON SCHEDULED	4
	14	ᅜ	ON SCHEDULED	4.
	15	Ξ,	CULLED ON SCHEDULED DAY	4
224	1	M	CULLED ON SCHEDULED DAY	4
	2	M	ON SCHEDULED	4
	ဇ	M	ON SCHEDULED	4
	∞	M	ON SCHEDULED	4
	6	ഥ	ON SCHEDULED	4
	11	ഥ	ON SCHEDULED	4
	12	ഥ	ON SCHEDULED	4
	13	ഥ	ON SCHEDULED	4
	15	ᅜᆡ	ON SCHEDULED	4
	16	ī	CULLED ON SCHEDULED DAY	4
229	1	M	CANNI BALI ZED APPFARS NORMAL	0
			TIME TO THE PERSON OF THE PERS	

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENERAT	ION REP WITH NI AL F1 P	APPENDIX V E-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI PUP OBSERVATIONS DURING LACTATION	PAGE 8
GROUP 2: 10 MG/KG/DAY)	(POSI TI VE FI NDI NGS)	
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY
229	8	W	CANNI BALI ZED	0
	8	M	CANNI BALLACA CANNI BALLACA ADDIALA AD	0
	4	M	CANNI BALI ZERO MORWAL CANNI BALI ZERO MODWA I	0
	īC	M	CANNI BALL CANNI BALL	0
	9	ഥ	CANNI BALL CANNI BALL ADDIADA	0
	7	ഥ	CANNI BALL	0
	8	ഥ	CANNI BALI ZER CANNI BALI ZER ADDARA DE MODARA I	0
	6	В	CANNI BALI ZER CANNI BALI ZER ADDIANA	0
	10	В	CANNI BALI ZED APPEARS NORMAL	0
234	1	M	SUBCUTANEOUS HEMORRHAGE(S) FACIAL AREA	0
	82	M	ON SCHEDULED ON SCHEDULED	4 4
	က <u>င</u> ်	Z F	ON SCHEDULED	4 4
	11	ᅜ	CULLED ON SCHEDULED DAY	4 4
	13	দ	CULLED ON SCHEDULED DAY	4
a SEX OF PUP COULD NOT BE DETERMINED DUE	STERMINED DUE TO CANNIBALIZATION	I BALI ZA	TI ON.	

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENERAT I NDI VI DU	ION REP WITH NI AL F1 P	APPENDIX V A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP OBSERVATIONS DURING LACTATION	PAGE 9
GROUP 2: 10 MG/KG/DAY		O	(POSI TI VE FINDINGS)	
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY
236		W	FOUND DEAD	0
	2	ഥ	FOUND DEAD	0
	4	M	ON SCHEDULED	4
	ιC	M	ON SCHEDULED	4
	6	M :	ON SCHEDULED	4
	10	¥	ON SCHEDULED	4
	11	ΙŦ	ON SCHEDULED	4
	12	щ	CULLED ON SCHEDULED DAY	4
	13	ഥ	SCAB(S)	4
			LEFT FORELIMB	
	17	щ	CULLED ON SCHEDULED DAY	4
238	гO	ഥ	CULLED ON SCHEDULED DAY	4
	9	ഥ	ON SCHEDULED	4
	7	ᅜ	CULLED ON SCHEDULED DAY	4
	∞	ᅜ	SCAB(S)	4
			LEFT PINNA	
	•	ŗ	CULLED ON SCHEDULED DAY	4.
	11	4	SCAB(S) DORSAL HFAD	4
			CHILED ON SCHEDILED DAY	4
	14	[1	SCHEDULED	4
	•	•		1
243	1	M	CULLED ON SCHEDULED DAY	4
	2	×	CULLED ON SCHEDULED DAY	4
	3	M	SUBCUTANEOUS HEMORRHAGE(S)	0
			NOSE CHITED ON SCHEDIII ED DAV	
				r

PAGE 10		LACTATI ON DAY	4	4	4	4	0		4	4	
APPENDIX V GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NDIVIDUAL FI PUP OBSERVATIONS DURING LACTATION	(POSITIVE FINDINGS)	PUP GROSS OBSERVATION	CULLED ON SCHEDULED DAY	SUBCUTANEOUS HEMORRHAGE(S)	TAIL TIP	CULLED ON SCHEDULED DAY	CULLED ON SCHEDULED DAY				
ENERATI ON REP WITH NI DIVI DUAL FI P	<u> </u>	UP NO. SEX		7 M	I F	F	1			F	
SLI STUDY NO.: 3472.3 A ONE-GE CLIENT: NIPERA, INC.	GROUP 2: 10 MG/KG/DAY	DAM NO. PUP	243	L	11	13	14			15	

APPENDIX V .: 3472.3 A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS RA, INC. INDIVIDUAL F1 PUP OBSERVATIONS DURING LACTATION	MG/KG/DAY (POSITIVE FINDINGS)	PUP NO. SEX PUP GROSS OBSERVATION LACTATION DAY	1	1 M CULLED ON SCHEDULED DAY 2 M CULLED ON SCHEDULED DAY 3 M CULLED ON SCHEDULED DAY 6 M CULLED ON SCHEDULED DAY 7 II F CULLED ON SCHEDULED DAY	1 F FOUND DEAD 0 2 M LACERATI ON(S) 0 8 M CULLED ON SCHEDULED DAY 4 5 M CULLED ON SCHEDULED DAY 4 6 M CULLED ON SCHEDULED DAY 4 7 M CULLED ON SCHEDULED DAY 4 7 M CULLED ON SCHEDULED DAY 4 10 F LACERATI ON(S) 4 FACI AI, ARFA 6 A 4
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 3: 20 MG/KG/DAY	DAM NO.	177	198	205

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENERAT INDIVIDU	I ON REP WI TH NI AL F1 P	APPENDIX V GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NDIVIDUAL F1 PUP OBSERVATI ONS DURING LACTATI ON	PAGE 12	
GROUP 3: 20 MG/KG/DAY			(POSITIVE FINDINGS)		
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY	! !
205	15 16	 - -	CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY	t	! !
208	0 10 10	폴 폴 দ দ	CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY SUBCUTANEOUS HEMORRHAGE(S) AROUND MOUTH	4 4 4 0	
	12 13	ᅜᅜ	CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY	4 4	
218	1 2 8 4 2 7	X	FOUND DEAD FOUND DEAD FOUND DEAD FOUND DEAD FOUND DEAD SUBCUTANEOUS HEMORRHAGE(S) CITICAL HEAD SUBSAL HEAD	000004 1	
	10 11 12	ᅜᅜ	SUBCUTANEOUS HEMORANGE(S) ABDOM NAL REGION CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY SUBCUTANEOUS HEMORRHAGE(S)	444	
	15 16	ᅚᄺ	CULLED ON SCHEDULED DAY PURPLE IN COLOR COOL TO THE TOUCH FOUND DEAD	4 0 0 1	

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENERATION RE WITH N INDIVIDUAL F1	I ON REP WI TH NI AL F1 P	APPENDIX V GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NDIVIDUAL F1 PUP OBSERVATIONS DURING LACTATION	PAGE 13
GROUP 3: 20 MG/KG/DAY			(POSITIVE FINDINGS)	
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY
218	17		SMALL IN SIZE	0
239	- 0	Σ×	CULLED ON SCHEDULED DAY	4
	o 4	≅ ≥	ON SCHEDULED	4 4
	ıν	×	ON SCHEDULED	4
	9	M	CULLED ON SCHEDULED DAY	4
	12	ш	SUBCUTANEOUS HEMORRHAGE(S) TAII. TIP	0
	13	ഥ	ON SCHEDULED	4.
	14 15	ᅩ	CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY	4 4
241	1 4	ΜΉ	FOUND DEAD SUBCUTANEOUS HEMORRHAGE(S) FACIAL AREA	0
242	2 2	MM	FOUND DEAD FOUND DEAD	0 0
	8	M	HAIRLOSS	14
			HAIRLOSS STIGHT	21
	4	M	HAIRLOSS STICHT	14
			HAIRLOSS CITCHT	21
	τC	M	MISSING - PRESUMED CANNI BALI ZED	62

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE- GENERAT I NDI VI DU	I ON REP WITH NI AL F1 P	APPENDIX V GENERATI ON REPRODUCTI ON RANGE- FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NDIVIDUAL F1 PUP OBSERVATI ONS DURING LACTATI ON	PAGE 14	
GROUP 3: 20 MG/KG/DAY			(POSITIVE FINDINGS)		
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY	!
242	9	W	HAIRLOSS CI L'OUT	14	:
			HAIRLOSS SI TEHT	21	
	7	Z.		4.	
	ဘ တ	Z Z	CULLED ON SCHEDULED DAY HAIRLOSS	4 14	
			SLI GHT HAI RLOSS CT COURT	21	
	10	ഥ	CULLED ON SCHEDULED DAY	4	
	11	ഥ	HAI RLOSS ST LCUT	14	
			HAIRLOSS catagram	21	
	12	ഥ	SLIGHI PALE IN COLOR	0	
			SMALL IN SIZE	0	
			COOL TO THE TOUCH MISSING - PRESIMED CANNIBALIZED	0 %	
	13	ഥ		$\tilde{14}$	
			HAIRLOSS citour	21	
	14	ഥ	HAI RLOSS GT T OTTE	14	
			HAIRLOSS CITCUT	21	
	15	ħ	HAI RLOSS SLI GHT	14	

PAGE 15		LACTATI ON DAY	21	4
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP OBSERVATIONS DURING LACTATION		PUP GROSS OBSERVATION	HAIRLOSS CHICUTT	CULLED ON SCHEDULED DAY
ONE- GENERATI ON RE WITH N I NDI VI DUAL FI		PUP	15 F	16 F
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 3: 20 MG/KG/DAY	DAM NO.	242	

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENERAT	ION REP WITH NI AL F1 P	APPENDIX V E-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP OBSERVATIONS DURING LACTATION	PAGE 16
GROUP 4: 30 MG/KG/DAY)	(POSITIVE FINDINGS)	
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY
200	1 2 3 3 7 7	: : XXXXL	FOUND DEAD CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY	04444
207	1 2 4 4 7 7 7 8 8 9 0	ZZZZZZZZZZ	FOUND DEAD FOUND DEAD CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY SUBCUTANEOUS HEMORRHAGE(S) NOSE SUBCUTANEOUS HEMORRHAGE(S) NOSE CULLED ON SCHEDULED DAY	004440 0 4
212	4 6 7 10 13 14 15	XXrrrrr	CULLED ON SCHEDULED DAY	ਰਾ ਰਾ ਰਾ ਰਾ ਰਾ ਰਾ
217	1 6	MM	FOUND DEAD CULLED ON SCHEDULED DAY	0 4

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. CROHP 4: 30 MC/KC/DAV	A ONE-GENERATI V I NDI VI DUA	ON REP	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP OBSERVATIONS DURING LACTATION (POSITIVE FINDINGS)	PAGE 17
	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY
	7		SUBCUTANEOUS HEMORRHAGE(S)	0
		•	FACIAL AREA)
			CULLED ON SCHEDULED DAY	4
	∞	ഥ	SUBCUTANEOUS HEMORRHAGE(S)	0
	(ļ	L AREA	
	<u>ත</u>	Ţ,	ON SCHEDULED	4
	10	ഥ	ON SCHEDULED	4
	11	Œ I	ON SCHEDULED	4
	12	ᅜ	ON SCHEDULED	4.
	13	<u>.</u>	CULLED ON SCHEDULED DAY	4
	1	M	FOUND DEAD	0
	83	M		0
	က	щ	FOUND DEAD	0
	4	ഥ	FOUND DEAD	0
	3	ഥ	FOUND DEAD	0
	7	¥	CULLED ON SCHEDULED DAY	4
	∞	W	PURPLE IN COLOR	0 0
		ŗ		7 7
	13	<u>.</u>	BENT TALL	21
	14	ഥ	SUBCURENT HEMORRHAGE(S)	0
			AKOUND MOUTH	
	8	M	CULLED ON SCHEDULED DAY	4
	တ	M	ON SCHEDULED	4
	o (ᅜ	ON SCHEDULED	4.
	10	<u>.</u>	CULLED ON SCHEDULED DAY	4

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE- GENERAT I NDI VI DU	ION REPI WITH NICAL FI PU	APPENDIX V GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NDIVIDUAL FI PUP OBSERVATIONS DURING LACTATION	PAGE	18
GROUP 4: 30 MG/KG/DAY		C	(POSI TI VE FINDINGS)		
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY	
230	13	<u> </u>	CULLED ON SCHEDULED DAY	4	1 1 1 1
240	1	ഥ	FOUND DEAD	0	
	2	M	SUBCUTANEOUS HEMORRHAGE(S)	0	
	c	×	FACIAL AKEA SUBCUTANFOUS HEMORPHAGE(S)	_	
	•	Ħ	FACIAL AREA		
			CULLED ON SCHEDULED DAY	4	
	4	M	SUBCUTANEOUS HEMORRHAGE(S) PICUT HANTIMD	0	
	1		KI GHI HI NDLI MB	,	
	īC	×	SCAB(S)	0	
	(;	TAIL III		
	9	Σį	CULLED ON SCHEDULED DAY	4	
	∞	Z	CULLED ON SCHEDULED DAY	4	
	6	ഥ	LACERATI ON (S)	0	
			DORSAL HEAD AND THORACIC		
	10	ഥ	SUBCUTANEOUS HEMORRHAGE(S)	0	
			FACI AL AREA		
			CULLED ON SCHEDULED DAY	4	
	11	ഥ	SUBCUTANEOUS HEMORRHAGE(S)	0	
			FACIAL AREA		
	13	ഥ	CULLED ON SCHEDULED DAY	4	
	15	ᄺ	CULLED ON SCHEDULED DAY	4	

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENERAT I NDI VI DU	TON REF WITH NI AL F1 P	APPENDIX V GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NDIVIDUAL FI PUP OBSERVATIONS DURING LACTATION	PAGE 19	
GROUP 5: 50 MG/KG/DAY		O	(POSI TI VE FINDINGS)		
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY	! !
194	1		FOUND DEAD	0	! !
	82	ഥ	APPARENT EXTERNAL MALFORMATIONS FOUND DEAD	0	
	,	I	APPARENT EXTERNAL MALFORMATIONS	,	
	7 3	ᅜᅜ	FOUND DEAD TACHRATTION(S)	00	
	-	4	LEFT LATERAL HEAD		
			LACERATI ON(S)	4	
			LEFT LATERAL ABDOMINAL		
			SCAB(S)	4	
			CCAR(C)	1	
			LEFT LATERAL ABDOMINAL	•	
			SCAB(S)	14	
			LEFT LATERAL ABDOMINAL	Č	
			SCAB(S) I RET I ATEDAL ABDOMINAL	21	
	10	ഥ	CULLED ON SCHEDULED DAY	4	
199	1	M	SCAB(S)	7	
			LEFT LATERAL ABDOMINAL	7	
			SCAB(S) LEFT LATERAL ABDOMINAL	14	
	3	ī	CULLED ON SCHEDULED DAY	4	
	4 , r	ĮTĮ į	MI SSI NG - PRESUMED CANNI BALI ZED		
	c	4	SCAB(S) I FFT CORNER OF MOITTH	14	
	9	ᄺ	CULLED ON SCHEDULED DAY	4	

SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC.	A ONE-GENERATION RI WITH N INDIVIDUAL FI	I ON REP WITH NI AL F1 P	APPENDIX V GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NDIVIDUAL F1 PUP OBSERVATIONS DURING LACTATION	PAGE 20
GROUP 5: 50 MG/KG/DAY		<u> </u>	(POSITIVE FINDINGS)	
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY
199	11		CULLED ON SCHEDULED DAY	4
202	හ <i>භ</i>	WW	CULLED ON SCHEDULED DAY	4 4
	7	×	ON SCHEDULED	4
	∞ ç	ᅜ	ON SCHEDULED	4
	12	ᅿᅜ	CULLED ON SCHEDULED DAY	₹ ₹
	15	, Ľ	ON SCHEDULED	4
	16	ഥ	CULLED ON SCHEDULED DAY	4
215	-	M	PALE IN COLOR GASPING FOINN DEAD	000
	9	ഥ	SCHEDULED	2 4
	~ ∝	ᅜᅜ	CULLED ON SCHEDULED DAY	4 4
	13	, II,	ON SCHEDULED	. 4
216	1	M	SUBCUTANEOUS HEMORRHAGE(S)	0
	,	;	ON SCHEDULED	4
	4 7	≅≥	CULLED ON SCHEDULED DAY	4 4
	- ∞	ш		0
			FACI AL AREA CUILED ON SCHEDULED DAY	4
	12	ц		4

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE- GENERAT I I NDI VI DU	ION REP WITH NI AL F1 P	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI PUP OBSERVATIONS DURING LACTATION	PAGE 21
GROUP 5: 50 MG/KG/DAY		<u> </u>	(POSITIVE FINDINGS)	
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY
226	જ મ		CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY	4 4
	7	Щ	NO	. 4
	12	ᅜ	CULLED ON SCHEDULED DAY	4
232	3	M	CULLED ON SCHEDULED DAY	4
	9	ഥ	SUBCUTANEOUS HEMORRHAGE(S) ARDAMI NAT BEGTON	0
			CULLED ON SCHEDULED DAY	4
	7	伍	SCAB(S)	4
			ANTERI OR DORSAL	~
	∞	Ħ	SUBCUTANEOUS HEMORRHAGE(S)	4 0
			AROUND MOUTH	
			ON SCHEDULED	4
	6	ഥ	ON	4
	11	ഥ	ON SCHEDULED	4
	12	ഥ	CULLED ON SCHEDULED DAY	4

SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.	A ONE-GENERATION R WITH INDIVIDUAL F1	ION REPH MITH NIC AL F1 PU	APPENDIX V GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NDIVIDUAL FI PUP OBSERVATIONS DURING LACTATION	PAGE 23	
GROUP 6: 75 MG/KG/DAY		1)	(POSI TI VE FINDINGS)		
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY	<u>!</u>
213				· · · · · · · · · · · · · · · · · · ·	!
	9	W	COOL TO THE TOUCH FOUND DEAD	0 1	
	7	M	COOL TO THE TOUCH	0 6	
	∞	M	FOUND DEAD	v 0 °	
	6	M	FOUND DEAD FOUND DEAD	v 0 °	
	10	M	FOUND DEAD FOUND DEAD	v 0 -	
	11	M	FOUND DEAD	1 0 0	
	12	Ħ	FOUND DEAD FOUND DEAD	v 0 °	
	13	Ħ	FOUND DEAD COOL TO THE TOUCH FOUND DEAD	0 1	
220	1 6	ᅜᇉ	FOUND DEAD ROTHN DEAD	00	
	346	. 🗷 🗵) 4 <	
	6	¥Н	ON SCHEDULED	1 4	
	10 13	ᅜᅜ	CULLED ON SCHEDULED DAY CULLED ON SCHEDULED DAY	7 7	
	16	ഥ	CULLED ON SCHEDULED DAY	4	
228	1	M	FOUND DEAD	0	!

SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	A ONE-GENERATION R WITH INDIVIDUAL FI	I ON REP) WITH NI AL F1 P	APPENDIX V GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE NDIVI DUAL F1 PUP OBSERVATI ONS DURING LACTATI ON	PAGE 24
GROUP 6: 75 MG/KG/DAY			(POSI TI VE FINDINGS)	
DAM NO.	PUP NO.	SEX	PUP GROSS OBSERVATION	LACTATI ON DAY
228	2	W	FOUND DEAD	0
	3	M		0
	4	ഥ	FOUND DEAD	0
	5	ഥ	FOUND DEAD	0
	9	M	CULLED ON SCHEDULED DAY	4
	6	M	APPARENT UMBILICAL HERNIA	14
	11	ഥ	GASPING	0
			CULLED ON SCHEDULED DAY	4
	12	Œ,		0
			CULLED ON SCHEDULED DAY	4
	14	ᄺ	CULLED ON SCHEDULED DAY	4
235	9	M	CULLED ON SCHEDULED DAY	4
	7	M	CULLED ON SCHEDULED DAY	4
	∞	M	CULLED ON SCHEDULED DAY	4
244	1	M	CANNI BALI ZED	0
			APPEARS NORMAL	
	2	ц	FOUND DEAD	0
	က	ī	_	0
	4	M	ON SCHEDULED	4
	6	M	SCHEDULED	4
	10	Щ	CULLED ON SCHEDULED DAY	4
245	_	×	FOIND DEAD	0
	2	W	CANNI BALI ZED	0
	•	ı	APPEARS NORMAL	•
	က	<u>.</u>	FOUND DEAD	0

PAGE 25		LACTATI ON DAY	0	0	0	0 0
APPENDIX V - GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI PUP OBSERVATIONS DURING LACTATION	(POSITIVE FINDINGS)	PUP GROSS OBSERVATION	CANNI BALI ZED ANDRA DE NODRA I	CANNI BALI ZED ADDEADE NODMAI	GASPING	COOL 10 THE TOUCH FOUND DEAD
ON REPINITH NI	\Box	SEX		В	M	
A ONE- GENERATI I I NDI VI DU		PUP NO.	4	5	9	
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 6: 75 MG/KG/DAY	DAM NO.	245			

a SEX OF PUP COULD NOT BE DETERMENED DUE TO CANNIBALIZATION.

SLI Study No. 3472.3

APPENDIX W

Individual F1 Pup Weights during Lactation

	! !		
	23		
PAGE DAY	22		
P/	21		
	20		
	19		
	18		
	17	5. 1 7. 2 7. 2	
S	16	6.6.6.0 6.6.6.0 6.6.6.0 7.0.0	
N RAT	15	7.5. 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.	
TUDY I	14	7.0.7 7.0.7 7.0.0 7.0.0 7.0.0 7.0.0	
NG ST ATE 'ATI ON	13	5.4 0 0 0 0.8 6.8 6.2 6.2	
FI NDI AHYDR LACT	12	00000000	
W ANGE- E HEX URI NG	11	6.6	
APPENDIX W GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE DIVIDUAL FI PUP WEIGHTS DURING LACTATION (GRAMS)	10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
APP ODUCT KEL S WEI G	6	6.88	
REPR H NI C 1 PUP	· ∞	5. 66 88 83 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
ATI ON WI T	7	6.0.0 8.0 8	
GENERA	9	6.6 6.6 6.6 6.0 7.0 7.0 7.0	
A ONE-C	5	6.00	
A	4	66.1 66.6 7.7 7 3 5 6.3 6 6.3 6 6.7 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 7 1 7 7 7 1 7	
	3	6.0 6.0 6.0 6.0 7.1 7.1 7.1 7.1 7.1 7.1 6.8 7.6 6.8 7.6 6.8 7.6 6.8	
	2	088888	
3472. 3 INC. GC/DAY	1	5. 7 6. 7. 2 7. 6 6. 7. 6 6. 1 6. 6. 1 6. 7 7. 7 7. 7 7. 7 7. 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 6. 7 7 7 7	
_	PUP NO. 1		
Y NO. NI PER.	PUP MEA	'	7
SLI STUDY NO.: 3472. CLIENT: NIPERA, INC. GROUP 1: 0 MG/KG/DAY	DAM NO.	192 196 206 219 221 221 231 233 237 N NEAN	D = DEAD PUP
SLI CLI]	DA]		

1 2	23	
PAGE DAY	22	
ъ	21	
	20	
	19	
	18	χ. 8
	17	6. 2
Σ	16	6.0 6.0 6.0
APPENDIX W IE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP WEIGHTS DURING LACTATION (GRAMS)	15	6 8 55 50 2 2 2 50
UDY I	14	7.00 7.00 7.00 7.00 7.00
NG ST ATE ATI ON	13	6.9 4.7.7.7.0 6.3 7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7
FI NDI AHYDR LACT	12	66.8
W ANGE- E HEX URI NG	11	6.00.0000000000000000000000000000000000
APPENDIX W UCTION RANG L SULFATE H EIGHTS DURI	10	6.0.0 4.0.0.0 4.0.0.0 5.0.0.0
APPI DDUCTI KEL SI WEI GI	6	0.00000
APPENDIX W E-GENERATION REPRODUCTION RANGE-FINDING STUDY IN F WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP WEIGHTS DURING LACTATION (GRAMS)	∞	6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
VII ON WI TI JAL FJ	7	6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3
ENERA I VI DU	9	8 6 9 4 8 8 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ONE- G IND	5	00000000000000000000000000000000000000
A ONI	4	7 7 7 7 7 9 7 7 9 7 7 9 9 9 9 9 9 9 9 9
	- 	288886 6.0 6.0 7.8 8.7 9.0 9.0
	8	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6
3 AY	8	8.8 8.0 7.1 9.6 6.8 6.8
3472.3 INC. 'KG/DAY	0. 1	10.3 6.7 7.4 D 6.6 6.7
NO.: PERA, 10 MG/	PUP NO. 1 MEAN	9.7 6.6 6.3 7.1 7.7 6.2 6.6 7.2 1.23
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 2: 10 MG/KG/DAY	DAM NO.	188 9 195 6 224 6 234 7 236 7 236 7 238 6 243 6 8 243 6 S. D. 1. N

	1	
2 -	23	
PAGE DAY	22	
\mathbf{P}_{L}	21	
	20	
	19	
	18	
	17	e
LIS	16	5. 6 D 6. 8 6. 8
IN RA AMS)	15	6 3 0 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
TUDY N (GR	14	6. 0 6. 0
INDING STUDY IN R HYDRATE LACTATION (GRAMS)	13	4.8.6.6.4.6.6.4.6.6.4.6.6.4.6.6.4.6.6.4.6.6.4.6.6.4.6.6.4.6.6.4.6.6.4.6.6.4.6.
- FI ND XAHYD G LAC	12	9 4 2 8 8 9 5 6 6 9 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9
APPENDIX W EPRODUCTI ON RANGE-FINDING NI CKEL SULFATE HEXAHYDRATE PUP WEIGHTS DURING LACTATI	11	6.9 6.0 7.1 7.0 6.5
APPENDIX W UCTION RANV L SULFATE I EIGHTS DURI	10	6.9 6.9
APF RODUCT EXEL S EXEL S	6	6.8 6.8 6.8 7.1 7.4 7.4
REPI TH NIC		7. 28 8. 27 8
E-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE WITH PUP WEIGHTS DURING LACTATION (GRAMS)	7	7.06
GENER DI VI D	9	66.7 66.0 66.0 7.3 7.4 66.0
A ONE- IN	5	6.9 6.5 6.5 7.0 7.0 6.5 8.5 8.5 8.5
V	4	7.7.0 7.3 7.3 0 0 5.9 5.9
	3	6.8 6.8 8.0 8.0 0 0 6.1 6.5 6.0
	2	6. 7 66. 2 7. 9 7. 9 D D D D
3472.3 INC. 'KG/DAY	1	7. 4 0 7. 2 0 7. 5 0 0 0 0
NO.: 3472.3 PERA, INC. 20 MG/KG/DAY	PUP NO. 1	
NY NO. NI PEI 20		6.88 6.88 7.1 6.88 6.88 6.88 6.88 7.1 6.3 7.1 6.3 7.1 6.3 7.1 6.3 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
SLI STUDY NO.: CLIENT: NIPERA, GROUP 3: 20 MG/	DAM NO.	177 6 198 6 205 5 208 7 218 4 239 6 241 6 242 6 MEAN 6 S. D. O.
SL1 CL1 GRC	ΩĄ	

CLI ENT: NI PERA,	PERA, I	INC.				F		. IM	N H	XEL S	SULFAT	WITH NICKEL SULFATE HEXAHYDRATE	(AHYDI	RATE	3	Ś						DAY	ΑY	-
GROUP 4: 30 MG/KG/DAY	30 MG/K	G/DAY				i	NDI VI.	JOAL	1 PU	MEI	TILIST	DAL FI PUP WEIGHIS DUKING LACIATION (GRAMS)	r LAC	IAII UI	S S S S S	(SWE)								
DAM NO.	PUP NO. 1	-	2	ေ	4	5	9	7		6	10	=	12	13	14	15	16	17	18	19	20	21	22	23
200	7.6		7.7	6.8	7.9	7.8								7. 1		! !		! !	!			1	! ! !	:
207	7.5	Q		7.7	7.3	8 .3								7.4										
212	9.9	6.4		7.1	7.0	7.3	7.0	6.5	6.4	6.5	5.6	7.6	6.7	7. 1	5.8		6.3							
217	6.3	Q		6.4	6. 4	8.9								6.3		4.8								
222	6.9	Q		Q	Q	Q								6.7										
230	7.3	7.5		7.9	7.6	7.6								7.3										
240	7.1	Q		7.3	7.5	7.4								7.0	7.0	7.4								
MEAN	7.0																							
S. D.	0.48																							
Z	7																							

GROUP 6: 75 MG/KG/DAY DAM NO. PUP NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 DAM NO. PUP NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 197 6.6 D 7.3 4.7 7.4 7.5 6.9 5.4 6.7 6.5 7.0 210 7.8 D D D D D D D 5.5 7.0 6.8 6.9 7.0 7.8 6.9 6.4 220 7.1 D D D D 5.5 6.0 6.5 5.3 5.1 4.7 4.8 6.4 6.5 4.6 4.9 5.5 221 7.3 To 7.9 7.5 7.8 7.2 7.1 7.1 7.6 6.9 6.5 6.8 6.9 7.0 7.8 6.9 6.4 222 7.3 To 7.9 7.5 7.7 6.6 7.3 7.5 7.2 7.1 7.1 7.6 6.9 6.5 6.8 6.9 7.0 7.8 6.9 6.4 224 7.3 To 7.4 7.0 6.1 5.9 7.0 6.9 6.6 6.3 5.8 6.2 5.8 MEAN 6.6 S.D. 0.82 N. 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SLI STUDY NO.: CLIENT: NIPERA,	/ NO.: 3 II PERA, I	3472.3 , INC.	က		7	A ONE	- GENE	RATIO! WIT	N REPI	API RODUCE SKEL S	APPENDIX WUCTION RANGE SULFATE H	A ONE-GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE TANDAL THE	FI NDI (AHYDR	NG ST	I Yau	N RAT	Š					PAGE DAY	E AY	6
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 7.3 4.7 7.4 7.5 6.9 5.4 6.7 6.5 7.0 D 8.4 7.4 8.6 7.8 8.4 8.7 8.1 7.7 6.3 8.1 6.8 8.2 7.8 7.3 D D D D D 5.5 6.1 5.7 D 5.7 6.0 D D 7.5 7.8 7.2 7.1 7.1 7.6 6.9 6.5 6.8 6.9 7.0 7.8 6.9 6.4 D D D D D 5.5 6.0 6.5 5.3 5.1 4.7 4.8 6.4 6.5 4.6 4.9 5.5 7.9 7.5 7.7 6.6 7.3 7.5 7.2 7.1 6.7 6.7 6.7 D D D D D 5.5 6.0 6.5 5.3 5.1 4.7 4.8 6.4 6.5 5.8 D D D D D D 5.5 6.0 6.5 5.3 5.1 4.7 4.8 6.4 6.5 5.8	GROUP 6:	75 MG/K	G/DA	λλ			- i	NDI VI	DOAL 1	r For	L WEI	1 2112	DUKI INC	ı LACI	AIION	C GREA	(SWI								
6.6 D 7.3 4.7 7.4 7.5 6.9 5.4 6.7 6.5 7.0 7.8 D D 8.4 7.4 8.6 7.8 8.4 8.7 8.1 7.7 6.3 8.1 6.8 8.2 7.8 7.3 5.8 D D D D D D 5.5 6.1 5.7 D 5.7 6.0 D 7.1 D D 7.5 7.8 7.2 7.1 7.1 7.6 6.9 6.5 6.8 6.9 7.0 7.8 6.9 6.4 5.5 D D D D 5.5 6.0 6.5 5.3 5.1 4.7 4.8 6.4 6.5 4.6 4.9 5. 7.3 7.6 7.9 7.5 7.7 6.6 7.3 7.5 7.2 7.1 6.7 6.7 6.4 D D D 6.4 7.0 6.1 5.9 7.0 6.9 6.6 6.3 5.8 6.2 5.8 NA D D D D D D B 6.4 7.0 6.1 5.9 7.0 6.9 6.6 6.3 5.8 6.2 5.8 6.6 6.3 5.8 6.2 5.8	DAM NO.	PUP NO.		1	် က	4	5	9	7		6	10	11	!	13	!	15	!	! !	:	!	!	! !	22	23
7.8 D D 8.4 7.4 8.6 7.8 8.4 8.7 8.1 7.7 6.3 8.1 6.8 8.2 7.8 7.3 5.8 D D D D D 5.5 6.1 5.7 D 5.7 6.0 D 5.7 6.0 D 5.5 6.1 5.7 D 5.7 6.0 D 5.5 6.9 6.4 6.9 6.5 6.8 6.9 7.0 7.8 6.9 6.4 5.3 7.8 7.2 7.1 7.1 7.6 6.9 6.5 6.8 6.9 7.0 7.8 6.9 6.4 5.3 7.6 7.9 7.5 7.7 6.6 7.3 7.5 7.2 7.1 6.7 6.7 6.7 6.8 6.9 6.4 6.5 6.8 6.9 7.0 7.8 6.9 6.4 6.5 6.4 6.5 6.8 6.9 7.0 7.8 6.9 6.4 6.5 6.8 6.9 7.0 7.8 6.9 6.4 6.5 6.8 6.9 7.0 7.8 6.9 6.4 6.5 6.8 6.9 7.0 7.8 6.9 6.4 6.5 7.8 7.2 7.1 6.7 6.7 6.7 6.7 6.7 6.8 7.2 7.1 6.7 6.7 6.7 6.7 6.7 6.8 7.2 7.1 6.7 6.7 6.7 6.7 6.8 6.9 6.6 6.3 5.8 6.2 5.8 6.8 6.9 7.0 6.9 6.6 6.3 5.8 6.2 5.8 6.8 6.9 7.0 6.9 6.8 6.3 5.8 6.2 5.8 6.8 6.9 7.0 6.9 6.8 6.3 5.8 6.2 5.8 6.9 6.8 6.8 6.8 6.8 6.8 6.9 6.8 6.9 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	197	6.6	 D	!	4.7	7. 4		6.9	5.4	6. 7	6.5	7. 0	: : :	! ! !	 	! ! !	! ! !	 	! ! !	! ! !	! ! !	! ! !	 	! ! !	! !
5.8 D D D D D D 5.5 6.1 5.7 D 5.7 6.0 D 7.1 D D 7.5 7.8 7.2 7.1 7.1 7.6 6.9 6.5 6.8 6.9 7.0 7.8 6.9 6.4 5.5 D D D D 5.5 6.0 6.5 5.3 5.1 4.7 4.8 6.4 6.5 4.6 4.9 5. 7.3 7.6 7.9 7.5 7.7 6.6 7.3 7.5 7.2 7.1 6.7 6.7 NA D D D D D D D G.4 7.0 6.1 5.9 7.0 6.9 6.6 6.3 5.8 6.2 5.8 6.6 0.82 7.8 7.9 7.5 7.7 6.6 7.3 7.5 7.2 7.1 7.1 6.7 6.7 7.3 7.6 7.9 7.5 7.7 6.6 7.3 7.5 7.2 7.1 6.7 6.7 7.4 7.8 6.9 6.6 6.3 5.8 6.2 5.8 7.5 7.6 7.9 7.0 6.9 6.6 6.3 5.8 7.8 7.6 7.9 7.0 7.8 7.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	210	7.8	Q		8.4	7. 4		7.8	8.4	8. 7	8. 1	7.7	8					7.3							
7.1 D D 7.5 7.8 7.2 7.1 7.1 7.6 6.9 6.5 6.8 6.9 7.0 7.8 6.9 6.4 5.5 5.5 D D D D D 5.5 6.0 6.5 5.3 5.1 4.7 4.8 6.4 6.5 4.6 4.9 5. 7.3 7.6 7.9 7.5 7.7 6.6 7.3 7.5 7.2 7.1 6.7 6.7 6.3 5.8 6.2 5.8 7.1 6.7 6.7 6.3 7.8 7.5 7.2 7.1 6.7 6.7 6.3 5.8 6.2 5.8 6.2 5.8 6.6 6.8 6.8 5.8 6.2 5.8 6.8 6.8 6.8 5.8 6.8 6.8 5.8 6.8 6.8 5.8 6.8 6.8 6.8 5.8 6.8 6.8 6.8 5.8 6.8 6.8 6.8 6.8 5.8 6.8 6.8 5.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6	213	5.8	Q		Q	Q		Q	5.5	6. 1	5.7	Q	7												
5.5 D D D D D 5.5 6.0 6.5 5.3 5.1 4.7 4.8 6.4 6.5 4.6 4.9 5. 7.3 7.6 7.9 7.5 7.7 6.6 7.3 7.5 7.2 7.1 6.7 6.7 6.7 6.8 7.8 7.8 7.2 7.1 6.7 6.7 8.7 8.8 6.2 5.8 8.8 6.2 5.8 8.9 5.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6	220	7.1	Q		7.5	7.8		7. 1	7. 1	7.6	6.9	6.5	∞		7.0	∞									
7.3 7.6 7.9 7.5 7.7 6.6 7.3 7.5 7.2 7.1 6.7 6.7 6.2 5. 6.4 D D D 6.4 7.0 6.1 5.9 7.0 6.9 6.6 6.3 5.8 6.2 5. NA D D D D D D D D D D D D D D D D D D	228	5.5	Q		Q	Q		5.5	6.0	6.5	5.3	5. 1	7		6.4	5		6							
6.4 D D D 6.4 7.0 6.1 5.9 7.0 6.9 6.6 6.3 5.8 6.2 5. NA D D D D D D D D D D D D D D D D D D	235	7.3	7.6		7.5	7.7		7.3	7.5	7.2	7. 1	6.7	6.7												
NA D D D D D D 6.6 0.82	244	6.4	Q		Q	6. 4		6. 1	5.9	7.0	6.9	9.9	6.3	∞	6.2	5.8									
	245	NA	D		Q	Q		Q																	
	MEAN	9.9																							
	S. D.	0.82																							
	Z	7																							
	D = DEAD FOF IN = NOT AFFEL CABLE	L OF INA	TON .	H WELL	CADL	1																			

	ı		
7 4	23		
PAGE DAY	22		
PA	21		
	20		
	19		
	18		
	17	8.9 9.0 7.3 10.1	
L	16	8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
IN RA AMS)	15	7.57	
TUDY N (GR	14	7.8 7.8 9.0 9.8 9.9 9.9	
ING S RATE TATI 0	13	D D D D D D D D D D D D D D D D D D D	
FIND XAHYD G LAC	12	0.0.01	
X W RANGE TE HE DURI N	11	2.7 2.7 3.8 8.8 8.8 10.0 10.0 9.7 4.0 9.7	
APPENDIX W UCTION RANG L SULFATE H EIGHTS DURI	10	8. 4 9. 3 9. 3 9. 3 9. 3 9. 3	
APPENDIX W GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE DIVIDUAL F1 PUP WEIGHTS DURING LACTATION (GRAMS)	6	9.5 9.7 9.1 10.0 8.9 8.9 8.9	
N REP TH NI F1 PU	. ∞	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
RATI O WI DUAL	7	4.7. 4.0.01. 8.0.0.0. 9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	
	9	8.8 8.6 10.0 10.0 10.0 9.5 9.5 9.6	
A ONE- IN	5	8.8 6.6 6.0 9.0 9.0 9.0 9.0	
	4	8.6 9.9 11.0 11.0 9.7 9.7 9.7 9.7	
	ေ	7.7 10.5 10.7 10.2 10.4 10.4 7.9	
eo .	2	8.7 8.7 8.7	
3472.3 INC. KG/DAY		7.5 D 10.4 9.7 9.2 9.3 9.5	
10.: ERA, MG/K	PUP NO.	8.3 9.6 10.0 9.0 8.9 9.4 9.5 9.2 0.52 8	<u>H</u>
UDY N : NIF 1: 0		1	AD PUP
SLI STUDY NO.: 3472. CLIENT: NIPERA, INC. GROUP 1: 0 MG/KG/DAY	DAM NO.	N. W.	D = DEAD
5,70			_

SEI STUD	Y NO.:	3472.	က			A ON	APPENDLA W A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS	RATI 0	IN REF	AF 'RODUC	AFFENDIX W UCTION RANGE	X W RANGE-	- FI ND	ING S	TUDY	IN RA	LS					PA	E	∞
CLI ENT: NI PERA,	NI PERA,	INC.					TATATATA	M	TH NI	CKEL	WITH NICKEL SULFATE HEXAHYDRATE	TE HE	XAHYD	RATE	(2) I	(Jan V							DAY	4
GROUP 2: 10 MG/KG/DAY	10 MG	/KG/D	Λ¥			,	INDIVIDUAL FI FUF WEIGHIS DUKING LACIAIIUN (GRAMS)	DOAL	FI PU	JF WEI	CHIS	DUKI N	d LAC	IAII 0.	N CER	AIMD)								
DAM NO.	0. PUP NO. 1 MEAN	0. 1	5	8	4	5	9	7		6	10	=	12	13	14	15	16	17	18	19	20	21	22	23
188	14.6	15. 2	13. 4	14.2	14. 5	14. 6	15. 4	1	1 1 1	 - - -	 - - -	1	 	 	 - - -	 	 	1						-
195	9.0	9. 2	9.2 9.4	8. 7	9. 2	10.1	9.2 9.8 10.3	9.8	10.3	9. 1	8. 1	8.3	9.0	9.0	7.7	8. 1	8.0							
224	8.6	8. 2	9.9	9. 1	9. 2	9.5	9.3	9.5	8.4	8. 2	4 8.2 8.9 8.1	8. 1	8.9	9. 1	5.9	8.5	8. 1	7.9	8 .3					
234	11.0	11.1	10.6	11.4	12. 2	10.8	10.9	11.7	11.0	11.1	10.5	10.1	10.8	11.2	10.6									
236	11.0	Q	Q	10.6	11.5	10.7	10.9	11.4	11.1	11.1	10.6	11.8	10.8	10.9	11.1	11.1	10.8	10.6						
238	9.0	9.5	9.5	9.6	7.8	9. 2	8.8	8.3	9. 1	9.0	9.3	9. 1	9.0	8. 7	9.3									
243	9.4	10.2	9.6	10.4	10.2	9. 2	10.0	8.4	9.6	10.0	8.8	8.6	9. 2	9.9	9. 2	9.4	7.7	8 9.2 9.9 9.2 9.4 7.7 8.6						
MEAN																								
S. D.	2. 10																							
Z																								
D = DEAD PUP	PUP	1 1 1 1						!		!	 		 - - -		 		!	1 1 1						

	!		
9	23		
PAGE 9	22		
P/	21		
	50		
	19		
	18		
	17	 83	
IS	16	8.6 8.9 8.5 7.3 9.0 D 9.4 8.6 9.9 10.8	
IN RA AMS)	15	8.8.8.9.9.9.9.9.0.0.0.0.0.0.0.0.0.0.0.0.	
TUDY N	14	9. 6 9. 6 9. 6	
ING S' RATE TATI O'	13	9.5 9.5 8.7 11.1	
- FI ND XAHYD G LAC	12	8.4 8.9 7.8 10.0 8.4 8.4 8.4 9.4	
X W RANGE TE HE DURI N	=======================================	4.88.9 6.00.3 7.88.9 8.9	
APPENDIX W UCTION RANG L SULFATE H EIGHTS DURI	10		
API RODUC CKEL S	6	9.6 9.1 8.9 9.8 7.7 8.7 10.0 11.1 8.8 8.3 8.9 8.8 11. 0 10.8	
APPENDIX W IE-GENERATION REPRODUCTION RANCE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP WEIGHTS DURING LACTATION (GRAMS)		9.9.9.9.9.9.11.1.2.2.2.4.4.4.11.2.2.2.4.4.4.4.4.4.4	
SATI OI WI C			
. –	9	9.5 10.8 8.9 10.1 8.6 8.0 10.8 10.6 8.4 6.7 10.2 9.6 10.3 11.6 9.6 8.2 9.6 8.2	
A ONE-	5	10.0 10.5 8.7 8.7 9.3 10.8	
	4	9.6 9.5 8.3 10.3 10.1 9.5 9.5	
	က	9.88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
~ ~	2	9. 4 8. 9 8. 7 11. 4 10. 5 9. 1 D	
3472.3 INC. /KG/DAY	-	10.0 10.0 9.9 1 0 9.8 1 0 0	
	PUP NO. 1 MEAN	44861041 468	
JDY NC NI PI S: 2C		177 9 205 8 205 8 205 8 208 10 218 8 239 9 241 10 242 10 242 10 8 8 239 9 241 10 242 10 10 10 10 10 10 10 10 10 10 10 10 10 1	
SLI STUDY NO.: CLIENT: NIPERA, GROUP 3: 20 MG	DAM NO.	177 9 198 9 205 8 208 10 218 8 239 9 241 10 242 10 MEAN 9 S. D. O.	į
2 C 2	. –	; ; ;	1

GROUP 4: 30 MG/KG/DAY DAM NO. PUP NO. 1	G/DA	;			:		M	IN H	CKEL	SULF/	WITH NICKEL SULFATE HEXAHYDRATE	XAHYD	RATE	10016	A ONE-GENERALION REPRODUCTION RANGE-FINDING SLUDI IN RAIS WITH NI CHE SULFACE SHARP MANAGEMENT OF A COMMENT OF THE STATE O	2					L F.	DAY 4	4
	1	Į,			_	I NDI VI	DOAL	ī Z	P WE	CHIS	DUKLN	lG LAC	IAIIC		(AIMD)								
MEAN		8	က	4	5	9	7	∞	6	10	10 11 12 13 14 15	12	13	14		16	17	18	19	20	21	22	23
11.3	q	11.9 1	10.2	11.3		10.8	11.9	11. 7	11.5	12. 1	11.5	10.6	10. 7	! ! !	 	 	 	 	 	! ! !	 		
207 10.9	Q	ص 1	11.0	10.4		11.3	11.5	11.2	11.2	10.2	11.0	11.2	10.9	10.1									
9.5	9.4	8. 4	9.7	9.8		9. 2	9. 1	8.8	8.8	8.0	10.3	9.3	9. 7	8.0	9.5	8.6							
8.3	Q	10.0	8.7	8. 2		8.3	7.9	6.4	9.0	8. 7	8.0	7.6	8. 7	9.0	7.2	8. 2							
8.7	Q	Q	Q	Q		8. 7	8.8	Q	7.5	9.4	9.5	8. 4	7.7	9.3	8.6								
10.2	0.4	10.2	11.1	10.4		9. 1	10.3	10.2	9. 2	10.3	8.6	10.3	10.1										
10.2	D	9.3	3 10.8 10.9 11.2	10.9		10.9	10.0	10.3	11.0	8.5	$10. \ 9 \ 10. \ 0 \ 10. \ 3 \ 11. \ 0 \ \ 8. \ 5 \ \ 9. \ 5 \ \ 9. \ 6 \ \ 9. \ 7 \ 10. \ 7 \ 10. \ 4$	9.6	9. 7	10.7	10.4								
S. D. 1. 13																							

CLI ENI: MI FERM,	PEKA,	INC.				,		M M	IH HI	CKEL	SULFA	TH HE	MITH NICKEL SULFATE HEXAHYDRATE	KATE		í						7	DAY 4	4
GROUP 5:	50 MG/KG/DAY	KG/D)	1 X			_	NDI VI	DUAL	FI PU	Y MEI	CHIS	DUKI N	G LAC	IATI 0	N GR	AMS)								
DAM NO.	PUP NO. 1		2	က	4	5	9	7		6	10	10 11 12	12	13	13 14 15	!	16	17	18	19	20	21	22	23
194	9.8		 D	<u> </u>	8. 7	10.3	11.0	9.8	8. 1	10.3	8.8	10.8	11.0 9.8 8.1 10.3 8.2 10.8 10.7		! !	 	 	! ! !					1 1 1	-
199	10.5	10.7	11.1	8.8	Q	10.7	11.2	10.8	10.2	10.9	10.1	10.2	10.4											
202	8.6	9.0	9.7	8.9	10.4	9.6	10.2	14.1	9.9	8. 7	8.6	8. 7	9. 7	9. 7	8.6	9.8 8.8 10.4	10.4							
215	10.4	Q	10.9	10.8	10.2	10.0	10.0	10.3	10.1	10.7	10.1	6.6	10.5	11.1										
216	11.0	10.5	12.5	10.1	11.3	11.0	11.4	11.7	10.1	11.2	11.1	10.4	10.9	10.1										
226	9.0	10.5	9. 1	8.4	9.5 8.4	8.4	8.9	8.4	8. 2	8. 2	9.5	9.0	9. 4											
232	10.8	11.4	11.9	11.1	11.2	11. 2	9. 5	10.9	10.3	10.6	10.2	8.6	$10.\ 9\ 10.\ 8\ 11.\ 0\ 10.\ 8$	10.8	11.0	10.8								
MEAN	10.2																							
S. D.	0.69																							
Z	7																							

CI I CTID		9779	c			NO	E CEN	TDAT	ON DE	A Itangari	APPENDIX W A ONE CENERATION BEDRODICTION PANCE EINDING STIIDY IN PATS	N X I	E ET N	DIMC	CTIIDA	IND	VTC					DVO	Ē.	c
CLI ENT: NI PERA,		3472. 3 INC.	9			A OIN	E- GE!	EKAII	ON RE	ICKEL	WITH NICKEL SULFATE HEXAHYDRATE	ATE H	EXAHY	DRATE	31001	N I	AIS					r A	FAGE 12 DAY 4	3 4
							INDIV	T DUAL	. F1 P	UP WE	INDIVIDUAL F1 PUP WEIGHTS DURING LACTATION (GRAMS)	DURI	NG LA	CTATI	0N (G	RAMS)								
GROUP 6: 75 MG/KG/DAY	75 MG/	/KG/D	4Y												,									
DAM NO.	PUP NO. 1	. 1	8	က	4	5	9	7	. ∞	6	7 8 9 10 11 12 13 14 15 16	=======================================	12	13	14	15	16	17	18	19	20	21	22	23
197			11.0	7.5	10.9	10.3	10.1	8.0	9.7	9.8	10.6				! ! !	! ! !			 	! ! !		! ! !	! ! !	!
210	11.8	Q	Q	12.5	11.0	12.4	11. 7	12.4	12.8	12.0	12.0	9.5	12.2	10.5	12.5	11.6	11.5							
220			Q	9.7	9.9	10.1	10.1	10.8	10.4	10.3	9. 1	9.8	9.0	9.6	10.9	10.7	8. 5							
228			Q	Q	Q	Q	9. 1	9. C	9.6	7.9	7.4	7.6	7.2	9. 2	9.4	7.3	7. 3	9.4						
235			11.4	10.8	11.2	9.6	10.5	10.3	10.8	10.1	10.1	9.7												
244			D	Q	D 10.0 11.2	11. 2	9.6	9.1	10.9	11.0	2 9.9 9.1 10.9 11.0 10.1 1	10.1	9. 7	10.0	9.3		10.1 9.7 10.0 9.3							
MEAN																								
S. D.	1. 10																							
Z																								
DEAN DIE						1 1 1 1			1 1 1 1	1 1 1 1	1 1 1 1		1 1 1 1	1 1 1 1	1 1 1 1					1 1 1 1				
D = DEAD	ror																							

CLI ENI: NI PEKA,	I PERA,	INC.						M	IH NI	WITH NICKEL SULFATE HEXAHYDRATE	ULFA	TH HE	KAHYD.	KAIE								a	DAY	_
POTE 1. O MC/RC/DAV	7/ JW (VAU. 7.				. –		NDIVIDUAL F1 PUP WEIGHTS DURING LACTATION (GRAMS)	F1 PU	P WEI(HTS	DURI NC	LAC	TATI 0	N (GR/	(SWI)								
100r	1 /MAY 0	14/ DA1	. !	1	1	1	1	1	1	1		1			1			1	1	1	1	1		1
DAM NO.	PUP NO. 1 MEAN	. 1	8	ဗ	4	3	9	7	∞	6	10	9 10 11 12		13	13 14 15		16	17	18	19	20	21	22	23
192	13.8	12. 4	 C	C 13.6	်	၂ ၁	14. 5	၂ ၁		 15. g		13.5	် ၁	် ၁	12.9	C	12. 7	.5 C C 12.9 C 12.7 14.5	! ! !	! ! !	: : :	! ! !	! !	! ! !
196	15.5	Ω	၁	၁	15.8	16.4	၁	14.4	၁	16.1	၁	15.3	၁	Q	15.4	၁	15.2	15.0						
206	17.3	၁	19.4	18.4	၁	၁	၁	C 17.4 18.5	18.5	၁	၁	C 15.9 1	17.8	14.7	C	16.6	၁							
219	14.7	16.6	15.4	16.2	၁	9.0	15.8	14.7	၁	15.3	၁	C	14.7	ပ										
221	15.0	၁	16.0	၁	၁	14.8	16.1	15.9	C	၁	၁	15.31	3.3	13.8	ပ	၁	14. 7	C						
231	15.2	14.5	၁	16.9	15.3	14.1	၁	15.9	၁	၁	14.7	C	5.3	၁	၁	၁	15.2	C						
233	15.8	ပ	၁	16.4	17.2	၁	၁	15.3	14. 7	17.1	C	C	15.6	14.9	၁	၁	14.9							
237	14.9	၁	၁	၁	15. 7	15.4	15.9	C	C	13. 7	၁	၁	၁	Q	14.4	13.2	15.8							
MEAN	15.3																							
S. D.	1.01																							
Z	∞																							

GROUP 2: 10 MG/KG/DAY DAM NO. PUP NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 MEAN WEAN 188 21.4 22. 2 20. 1 20. 7 21. 6 21. 2 22. 6 195 15. 3 C 16. 7 C 15. 7 C 16. 5 16. 1 C C 15. 8 C C C 10. 7 C C 13. 5 224 15. 1 C C C 20. 4 17. 7 18. 2 19. 2 18. 9 18. 3 C C C 16. 9 236 18. 4 D D 17. 9 C C 18. 0 18. 7 15. 6 C 15. 14. 4 C 238 15. 0 15. 8 15. 2 16. 4 13. 0 C C C 14. 7 15. 6 C 15. 14. 4 C	1 NDI VI DUAL F1 PUP WEI GHTS DUKING LACIATION (GRAMS) 6 7 8 9 10 11 12 13 14 15 2 22.6 16.3 C 17.2 C 14.0 14.3 C 15.0 C C C 16.5 C C C C C C C C C C C C C C C C C C C	UP WEIG 9 9 6 6 7	interpretation in the second s	WEIGHTS DUKING LACIATION (GRAMS) 9 10 11 12 13 14 15 16 C 14,0 14,3 C 15,0 C C 13,5	13	0N (GR)	AMS) 15		1					
PUP NO. 1 2 3 4 5 1 1 2 1 4 5 1 1 2 1 4 2 1 4 5 1 1 2 1 4 2 1 2 1 5 1 6 2 1 1 5 1 6 1 1 1 5 1 6 1 1 1 6 1 1 1 1 6 1 1 1 1	6 7 8 6 6 7 8 5 16.1 C	0 C	10 1	1 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	13		15							
21.4 22.2 20.1 20.7 21.6 21.15.3 C 16.7 C 15.7 C 15.8 16.18.4 C C 20.4 17.18.4 D D 17.9 C 15.0 15.8 15.2 16.4 13.0	6 3 C 17.2 5 16.1 C		14. 0 14	ۍ د د	15. 0	: : : :			17 1	18 19	50	21	22	23
15.3 C 16.7 C 15.7 C 15.7 C 15.7 C 15.1 C C 2 16.8 16.18.4 C C 2 0.4 17.18.4 D D 17.9 C C 15.0 15.8 15.2 16.4 13.0 C C 15.3 C C 15.8 15.2 16.4 13.0 C C C 15.8 15.2 16.4 13.0 C C C C C C C C C C C C C C C C C C C	3 C 17. 5 5 16. 1 C		4.014	. 3 C	15.0	ت		! !	! !	! ! !				
15.1 C C C 16.8 16. 18.4 C C 20.4 17. 18.4 D D 17.9 C 0 15.0 15.8 15.2 16.4 13.0	. 5 16.1 C	ַ		,	ر)	ິວ	13.5						
18.4 C C 20.4 17. 18.4 D D 17.9 C 15.0 15.0 15.8 15.2 16.4 13.0		ָ	5.8	ر د	د	10.7	၁	C 1	3.3 14	9 .				
18.4 D D 17.9 C 15.0 15.8 15.2 16.4 13.0	2 19.2 18.9	18.3	၁	C 17.6) C	16.9								
15.0 15.8 15.2 16.4 13.0	0 18.7 19.2	၁	၁	၁ ၁	18.5	18. 7	18.6	17.8	၁					
	D D D	14.7 1	5.6	C 15. 1	14.4	၁								
15.9 C C 17.9 17.0	C C 16.5	17.3 1	4.4	C 15.8	3 C	C	သ	14.0 1	4.5					
17.1														
S. D. 2. 41														
N 7														

			!
PAGE 15 DAY 7	23	 	! ! !
AGE DAY	22		
Δ.	21	 	!
	20		
	19		1
	9 10 11 12 13 14 15 16 17 18 19		! ! !
	17	0 %	! !
S	16	C D 14.0	! ! !
IN RA' AMS)	15	14.6 C C C C C C	
APPENDIX W E-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP WEIGHTS DURING LACTATION (GRAMS)	14	15. 5 C C C 15. 9 16. 1 C C 15. 1 14. 6 13. 8 17. 0 C 14. 9 15. 9 C C 15. 7 C 15. 3 13. 8 17. 0 C 13. 9 15. 9 C C 15. 7 C 15. 3 18. 8 C 16. 6 16. 5 18. 9 17. 8 C C 14. 4 10. 8 15. 8 14. 5 C C 14. 4 10. 3 15. 6 C D 8. 0 15. 8 14. 5 14. 4 14. 1 14. 0 14. 1 C C C 14. 0 15. 5 17. 3 15. 2 15. 5 C C 17. 0 C 15. 0 D 18. 1 15. 3 15. 6 C	! !
OING S ORATE CTATIO	13	15. 7 14. 5 0 0 0 0 10. 3	1
- FI NI XAHYI G LAC	12	C C C C C C C C C C C C C C C C C C C	! !
X W RANGE TE HE DURI N	11	16. 1 10. 7 17. 8 C 14. 0 15. 0	! ! !
APPENDIX W UCTION RANG L SULFATE H EIGHTS DURI	10	15.9 15.9 15.9 18.9 C C C	! ! !
AP RODUC CKEL P WEI	6	C C C 14. 9 13. 0 16. 5 14. 4 14. 4 17. 0	! ! !
N REP FH NI E1 PU		C C C C C C C C C C C C C C C C C C C	! !
RATI OF WI DUAL I	7	17.0 C C C C 10.8 17.3	
- GENEI NDI VI I	9	15. 5 14. 4 15. 5 15. 5	
A ONE.	5	17. 3 17. 0 C C C C C C C D D D D D D D D D D D D	
•	4	16. 5 17. 3 15. 9 17. 0 14. 3 C 18. 0 C C C C C 15. 5 16. 2 15. 3 D	! !
	က	18.8 0 0 0 1.4.2	- - -
ج ع	~	16. 2 C C C D D 17. 6 14. 2 I	ED PU
3472.3 INC. /KG/DAY	-	16.9 D D C C C D D D D D D D D D D D D D D D	CULLI
NO:: 3472.3 PERA, INC. 20 MG/KG/DAY	PUP NO. 1 MEAN	15.2 15.7 17.8 17.8 17.8 17.8 15.7 15.8 15.8 15.8 15.8	JP C =
SLI STUDY NO.: CLIENT: NI PERA, GROUP 3: 20 MG/	DAM NO. P	177 1 198 1	D = DEAD PUP C = CULLED PUP

CLI ENI: INI FERA,		INC.					!	M	IN HI	CNEL	SULFA	ILE HE	WITH NICKEL SULFAIE HEXAHYDKAIE	KAIE		Í						ñ	DAY /	`
GROUP 4: 30 MG/KG/DAY	30 MG/F	/α/D}	Į.			_	INDI VI	DUAL	F1 PU	P WEI	GHTS	DURI N	INDIVIDUAL FI PUP WEIGHIS DURING LACTATION (GRAMS)	TATI 0	N (GR	(AMS)								
DAM NO.	0. PUP NO. 1 MEAN	-	~ ~	က	4	5	9	2 8	!	6	10	11	9 10 11 12 13 14 15 16	13	14	15	16	17	18	19	20	21 2	22	23
200	18.5	D			18.9	18. 4	18. 2		19. 1	18. 6	19. 2	18.4	18. 2 C 19. 1 18. 6 19. 2 18. 4 16. 9 C	- C	 	! ! !	 	1 1 1 1 1 1						
207	16.9	Q	Q	16.4	၁	၁	17.3	ပ	16.9	16.9	ပ	17.0	17.3	17.2	15.8									
212	15.3	5. 1	13.2	16.3	၁	17.2	၁	၁	14.5	14.5	၁	17.0	14.3	C	C	၁	၁							
217	13.5	Q	16.1	14.2	13.3	15.0	၁	၁	10.8	၁	၁	ပ	၁	C	14.4	11.6	12.3							
222	12.8	Q	Q	Q	Q	Q	11.7	၁	Q	11.7	12. 1	14.7	13.6	12.0	13. 7	13.0								
230	15.6	6.3	၁	ပ	15.7	16.2	14.6	15.9	15.7	၁	၁	15.0	15.4	C										
240	16.4	D	D 15.3 C 16.9 17.1	၁	16.9	17. 1	၁	16.8	C	17.3	၁	14.8	15.6	C	17.2	၁								
MEAN																								
S. D.	1.96																							
Z																								

CLI ENI: NI PEKA,	l PEKA, 1	INC.					!	M	N HI	CKEL	SULFA	TE HE)	WITH NICKEL SULFATE HEXAHYDRATE	SATE		Í						DA	DAY 7
GROUP 5: 50 MG/KG/DAY	50 MG/1	/U/9∑	\X			_	NDI VI	INDIVIDUAL F1 PUP WEIGHTS DURING LACTATION (GRAMS)	F1 PU	P WEI	CHTS	DURI N(G LACI	FATI O	N (GR.	AMS)							
DAM NO.	PUP NO. 1 2 MEAN	-	2	ြက	4	5	9	7 8 9 10 11 12 13 14 15 16 17 18 19		6	10	11	12	13	14	15	16	17	18	19	20	21 2	22 23
194	14.1		Q	 D	12.9	14. 1	15.6	15. 6 13. 4 11. 7 14. 7 C 14. 8 15. 4	11. 7	14. 7		14.8 1	15.4		1 1 1 1 1			! ! !	! ! !	! !	 	 	
199	16.2	15.0	17.3	၁	Q	16.2	၁	16.8	16.2	17.0	15.3	C	16.0										
202	15.9	15.4	16. 1	၁	17.8	C	16.7	၁	C	14.4	17.0	14.0	C 1	10.1	O O	၁	C						
215	16.2	Q	16.8	17.0	16.2	15. 1	၁	၁	C	16.5	15.4	16.0 1	16.8	၁									
216	17.4	၁	19.4	16.2	၁	18.0	17.4	၁	၁	17.8	17.6	16.6	C 1	6.4									
226	12.7	14. 1	၁	13.2	13.5	C	11.4	၁	11.7	11.6	13.3	12.4	C										
232	17.1 17.8 18.0 C 17.3 18.1	17.8	18.0	၁	17.3	18. 1	C	၁	C	၁	15.6	C	C 1	$16.\ 5\ 16.\ 6\ 17.\ 2$	16.6	17.2							
MEAN	15.7																						
S. D.	1.68																						
Z	7																						

A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NI CKEL SULFATE HEXAHYDRATE DAY 7	INDIVIDUAL FI FOF WEIGHIS DOKING LACIATION (GRAND)	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	C 11.0 16.3 15.1 15.6 12.3 14.3 15.0 15.9 D 20.0 18.4 C 18.1 20.0 C C 18.6 C C C 20.4 18.6 17.6 D 15.9 C 15.5 15.9 C 16.6 C C 15.5 14.7 C 17.0 17.2 C D D D D C 15.2 16.6 13.2 11.8 C C 12.6 12.7 15.8 1 18.2 17.6 17.7 14.6 C C C 15.6 15.5 15.1 D D D C 17.8 16.8 15.1 17.2 C C 16.7 15.4 16.8 14.9
A ONE-G	TIND	! ! !	15. 1 15. 1 15. 2 18. 15. 1 15. 5 15. 15. 15. 15. 15. 15. 17. 8 16. 17. 8 16.
		4	16. 3 18. 4 C C D D 17. 7 C
		က	11.0 20.0 15.9 D D 17.6 D
က	Į,	. 2	C C D D D D D D D D D D D D D D D D D D
3472. 3 INC.	KG/DA		D D D D D D D D D D D D D D D D D D D
NO.: [PERA,	75 MG/	PUP NO. 1	14. 4 19. 0 16. 0 16. 4 16. 3 16. 1 17. 73
SLI STUDY NO.: CLI ENT: NI PERA,	GROUP 6: 75 MG/KG/DAY	DAM NO.	220 220 228 228 235 244 MEAN N N N N

CEL ENT: INT FIRST,						INDIVIDUAL ET BID MET CHES BIDING I ACTATION CODANG	MINITAL	NDIVERSITY OF BITS WEIGHTS BITS I ACTUAL ON CODANGS	TO 17	TOWN OF	OTIL	MIGHT	OVI	TILVIL	do / IM	A N.C.								
ROUP 1: 0 MG/KG/DAY	0 MG/k	G/DA	}			•	INDI VI	DOAL	FI PL	I WEI	GHIS	DUKLIN	r LAC	IAIIC	15 N	(AIMD)								
DAM NO.	10. PUP NO. 1	. 1	2	ေ	4	5	9	7		6	10	10 11 12 13 14 15	12	13	14	15	16	16 17 18	18	19	20	21	22	23
192	30.0	28. 7		29. 1	C	C	30.8			33. 5	 D	30.2			27.8	C	29. 1	30. 7	 		1		!	
196	32. 1	Q	C		32.5	33.7	၁	31.0	၁	33.0	ပ	33.0	၁	Q	32.6	၁	30.6	30.7						
206	35.2	C	38.3		၁	ပ	၁	C 34.0	37. 1	၁	ပ	33. 1	36. 1	30.9	၁	35.3	C							
219	31.1	33. 7	30.7		၁	Q	31. 1	28.4	၁	31.3	ပ	၁	30.6	၁										
221	31.3	C	33. 1		၁	31.7	32.4	32.3	၁	၁	ပ	31.4	28. 2	30.2	ပ	၁	30.9	၁						
231	31.8	31.2	၁		32. 7	30.5	ပ	33.5	၁	ပ	29.4	၁	30.4	၁	၁	၁	32. 2	၁						
233	32. 1	C	C		34.0	ပ	C	32.0	30.8	34.0	၁	C	31.2	31.7	၁	၁	30.2							
237	31.7	C	၁		32.9	33. 5	31.9	C	၁	29.5	C	o o	၁	Q	C D 29.9 30.5 33.4	30.5	33.4							
MEAN	31.9																							
S. D.	1.49																							
Z	∞																							

CLI ENI: NI PERA,	I PERA,	INC.				Ī		M .	I E	CKEL	SULFA	TE HE	XAHYD	RATE	WITH NICKEL SULFATE HEXAHYDRATE	Í						1	DAY	14
GROUP 2: 10 MG/KG/DAY	10 MG/	KG/D)	4Y			1	I NDI VI	DUAL	FI P	I WE	CHIS	DUKI N	G LAC	TAILC	<u>.</u>	(AMB)								
DAM NO.	PUP NO. 1	-	. 2	3	4	5	9	7	· ∞	6	6 7 8 9 10 11 12 13 14 15 16 17 18 19	11	12	13	14	15	16	17	18	19	20	21	22	23
188	38.5	39. 6	38. 6	37.7	37.8	38.0	39. 2	! ! !	 	1 1 1	!	! ! !	 	! ! !	1	1 1 1	! ! !	! ! !	! !	! ! !	 		!	
195	33.5	၁	34.5	၁	34. 2	ပ	35.3	၁	35.9	၁	31.6	32.7	၁	33.0	ပ	၁	30.8							
224	32.0	C	၁	၁	32.6	35.4	33.6	34.3	ပ	၁	32.5	၁	၁	၁	25.7	၁	၁	30.0	32.2					
234	34.6	၁	၁	၁	37.2	33.3	34.3	36.2	35.5	32.9	၁	၁	34.3	၁	32. 7									
236	36.5	Q	Q	36. 1	၁	၁	35.8	37.6	36.9	၁	၁	၁	၁	35. 7	37.9	36. 1	36. 2	၁						
238	28.6	29.5	28.8	30.2	25.8	၁	၁	C	၁	28.5	29.5	၁	29.3	27.3	၁									
243	31.9	C	C C 33.9 33.5 C	33.9	33. 5	၁	C	၁	31. 1	33. 3	C C 31.1 33.3 29.5 C 32.1 C C 29.8 31.6	၁	32. 1	C	C	၁	29.8	31.6						
MEAN	33.7																							
S. D.	3. 26																							
Z	7																							

CLI ENT: NI PERA,	I PERA, 1	INC.				-	TATAM	W	TH NI	CKEL	SULFA	WITH NICKEL SULFATE HEXAHYDRATE	XAHYD	WI TH NI CKEL SULFATE HEXAHYDRATE	45								DAY 14	14
ROUP 3: 20 MG/KG/DAY	20 MG/F	(G/DA	Y.			-	NDI VI	DOAL	FI PU	r wei	GHIS	DOKLN	d LAC	IAIIO	NDIVIDUAL FI FUF WEIGHIS DUKING LACIATIUN (GRANS)	AIMD)								
DAM NO.	PUP NO. 1	-	2	်က	4	5	9	7		6	10	= = = = = = = = = = = = = = = = = = = =	12	13	14	15	16	9 10 11 12 13 14 15 16 17 18 19	18	19	20	21	22	23
198	!				34.8		32.9	36.3		32.9	34.6			32. 6	32.9 36.3 C 32.9 34.6 C C 32.6 C 34.0	34.0	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!	1	1		! ! !	
205		Ω			30.5		၁	၁	29. 2	29.0	၁	25.0	29. 2	31.4	28.6	၁	၁							
208		35.5			36.8		38. 2	၁	36. 1	36.0	38.0	37.6	၁	၁										
218		Q			Q		30.3	25.3	31.3	30.7	၁	C	29.8	24.0	32.0	၁	Q	20.7						
239		၁			၁		၁	30.7	28. 7	28. 4	28.8	27.5	29.0	၁	ပ	၁	28.0							
241		Q	28.43	31.5	30.7	7 29.9	30.0	30.9	29.4															
242	30.5	D			31. 5		30.5 C	၁	၁	31.8	C	28. 2	D	32. 7	C 31.8 C 28.2 D 32.7 30.1 31.0 C	31.0	၁							
MEAN	31.2																							
S. D.	3.24																							
Z	7																							

CLIENI: NIPEKA,		INC.				•		M .	E E	CNEL	SULF	ALE HE	WITH NICKEL SULFAIE HEAAHIDKAIE	KAIE		í						DAY		14
GROUP 4: 30 MG/KG/DAY	30 MG/	KG/D)	IX				I NDI V	DOAL	F Z	P WE	CHIS	DUKLN	INDLVIDUAL FI PUP WEIGHIS DUKLNG LACIATIUN (GKAMS)	IAII	<u>5</u> S	(AMS)								
DAM NO.	0. PUP NO. 1 MEAN	-	2	3	4	5	9	7	∞	6	10	11	7 8 9 10 11 12 13 14 15 16 17 18	13	14	15	16	17	18	19	20	21	22	23
200	1		 C	၂	35.9	35.2	35.3		35.9	34. 7	35.4	33.9	33. 7	C	! ! !	1 1 1	! ! !	! ! !	 	1 1 1 1 1 1		! ! !		
207		Q	Q	32.7	၁	ပ	32. 7	C	32.6	32. 1	ပ	31.0	31.7	32.2	31.5									
212		32.0	29.7	34. 1	၁	35.4	ပ	C	32. 2	31.8	ပ	34.7	32. 5	၁	ပ	၁	၁							
217		Q	31.4	28.4	28.0	29.9	ပ	C	23.6	၁	ပ	၁	၁	၁	29.6	24.8	26. 1							
222		Q	Q	Ω	Q	Q	29.4	၁	Q	29.9	29.7	33.6	32. 2	29. 2	32. 1	30.7								
230	30.9	32.3	ပ	၁	31.2	32.6	30.3	30, 3, 31, 1, 3	30.5	၁	ပ	29.0	30.0	၁										
240		Q	27.9	၁	32. 7	32. 7	၁	31.9	C	31.3	C	28.6) C 31.3 C 28.6 28.9 C 32.6 C	၁	32. 6	၁								
MEAN	31.5																							
S. D.	2. 23																							
Z	7																							

CLI ENI: INI FERA,	ERA, I	INC.				WITH NICKEL SULFATE HEXAHYDRATE		M .	N HI	CKEL	SULE	ATE HI	WI TH NI CKEL SULFATE HEXAHYDRATE	RATE	5	ĺ,							DAY	14
GROUP 5: 50 MG/KG/DAY	30 MG/K	G/DA	>-			-	NDI VI	DUAL	Ī.	JP WE.	CHIS	DUKL	NG LAC	IAIIC	<u>5</u>	(AIMB)								
DAM NO. F	PUP NO. 1		2	က	4	5	9	7	∞	6	10	=======================================	12	13	14	7 8 9 10 11 12 13 14 15 16 17 18 19	16	17	18	19	20	21	22	23
194 2	7.1	D	a	, Q	24. 2	27. 0	29. 0	25.8	24. 3	27.3	 C	29. 4	29. 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	! !	 							
	31.9 3	0.1	32.9	၁	Q	32.0	၁	32.4	32.6	32.4	32.0	C	31.0											
	31.8 3	1.7	31.0	ر. ن	34.8	၁	32.2	၁	ပ	29.8	33.6	28.5	၁	33.0	၁	၁	၁							
	30.2	Ω	30.03	2.2	30.1	28.8	၁	ပ	ပ	30.1	29.3	29.8	31.3	ပ										
	35.1	ر. د	37.73	4.3	၁	36.0	34.9	၁	၁	35.3	36.0	33.4	၁	33.5										
	7.7 3	0.5	C 2	8.3	29.0	၁	26. 2	C	26.5	26. 1	28.3	26.9	၁											
	34.7 3	5.0	35. 0 36. 7 C 36. 5 35. 8	., ၁	36. 5	35.8	C	၁	C	C	32.9	၁	C C C 32.9 C C 32.5 3	32. 5	32. 5 33. 6 34. 5	34.5								
	11.2																							
S. D. 3	3. 12																							
	7																							

OLI LIVI. MI LIVII,	RA, IN	INC.			WITH NICKEL SULFATE HEXAHYDRATE		M	N HI	CKEL	WITH NICKEL SULFATE HEXAHYDRATE	TE HE	XAHYL	ORATE									DAY	14
GROUP 6: 75 MG/KG/DAY	MG/KG	/DAY				I NDI V	I DUAL	F1 P	OP WE	INDIVIDUAL F1 PUP WEIGHTS DURING LACTATION (GRAMS)	DURI N	IG LAC	CTATI (ON ON	RAMS)								
DAM NO. PU	PUP NO. 1 2	1 2	e e	4	5	9	7		6	7 8 9 10 11 12 13 14 15 16 17 18 19 20	11	12	13	14	15	16	17	18	19	20	21	22	23
!	!) Q	23. (5 29. 3	3 28.6	29. 4	25.3	27.5	28. 2	29.8	 	! ! !			!	 	 			! !	!	 	
210 36	36.2	D D	38.	3 35. 5	°	34.3	37.4	ပ	၁	35.5	ပ	၁	၁	38. 2	35.9	34.3							
		D L	32.	O 0	30.4	29.2	C	31.9	၁	၁	31.3	28. 7	၁	33.2	32.7	C							
		D L	O (Q	Q	C	30.0	32.9	29. 1	27.3	ပ	၁	31.7	ပ	27.4	27.6	32.3						
		. 5 34.	7 34.	1 34. 8	3 28.8	C	၁	ပ	30.7	29. 7	30.4												
		D I	O .	D C 33.3	33. 3	31.7	30.0	33.4	၁	31. 7 30. 0 33. 4 C C 30. 6 29. 1 29. 9 30. 6	30.6	29. 1	29.9	30.6									
	4.																						
S. D. 2.	2.82																						
	9																						

CLI ENT: NI PERA,	I PERA,	INC.				WI TH NI CKEL SULFATE HEXAHYDRATE		WI TH NI CKEL SULFATE HEXAHYDRATE	IN HI	CKEL !	SULFA	TE HE	XAHYD	RATE								1	DAY ;	21
ROUP 1: 0 MG/KG/DAY	0 MG/K	G/DAY				-	INDI VI	DOAL	F1 PU	P WEI(HIS	DURI NA	G LAC	TATI C	N (GR	(AMS)								
DAM NO.	PUP NO. 1	. 1	2	3	4	5	9	7	· ∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23
192	49.8	47. 1	 C		C		51.2	 C				50.0			46.9	 C	48. 3	50. 7	1			-	1	!
196	50.8	Q		သ	52.0	52.4	ပ	l C 48.8	၁	51.7	ر د	52.1	၁	Q	51.9	၁	48.3	49.5						
206	54.0	၁			၁	C	ပ	56.1	54.8			49.7	56.3	49.6	၁	53.2	၁							
219	49.8	54.6			C	Q	49. 1	46.9	၁			ر د	50. 1	C										
221	52.7	C			C	54.0	52.9	51.0	၁			54.2	48.3	50.0	C	၁	54.9	၁						
231	50.1	50.1			51.8	50.1	၁	52.5	၁			C	48.4	၁	C	၁	47.6	၁						
233	54.3	၁			57.4	၁	၁	54.9	51.8			ر د	53. 1	53.3	၁	၁	52. 2							
237	50.2	၁			52.8	52.0	51.3	C	C			၁	C	Q	46.6	48.9	52.6	C D 46.6 48.9 52.6						
MEAN	51.5																							
S. D.	1.91																							
Z	∞																							

CLI ENT: NI PERA,	I PERA,	INC.				-	TAT TATA	IM MI	IN HI	CKEL	SULFAT	E HEX	(AHYD)	RATE	WITH NICKEL SULFATE HEXAHYDRATE	Ġ.						I	DAY	21
GROUP 2: 10 MG/KG/DAY	10 MG/1	KG/DA	Į.			-	NDI VI	DOAL	FI PU	WE.	T 21H5	JUKI NC	ı LAC	IAIIO	N (GR)	(CMIX								
DAM NO.	PUP NO. 1	-	8	3	4	5	9	7	∞	6	9 10 11 12 13 14 15 16 17 18 19	11	12	13	14	15	16	17	18	19	20	21	22	23
188	64.8	36. 6	64.9 6	33. 7	63.9	64. 0	65.8	 	 	! !	 		1	! !		!	! ! !						1	
195	53.0	၁	56.2	၁	54.4	၁	54.2	ပ	57.3	ပ	47.95	6.0	۔۔ ن	54.0	၁	ပ	49.3							
224	50.8	C	၁	C	53.2	55.9	54.3	57.1	၁	ပ	55.2	၁	၁	C	41.8	၁	C	46.9	11.8					
234	55.4	C	၁	၁	59.8	52.9	54.3	58.9	56.4	51.8	၁	C	55.9	ر د	53.3									
236	61.5	Q	9 0	31.5	C	၁	61.4	65.3	63.8	၁	၁	၁	۔ ت	59.9	30.6 £	59.7	59.6	၁						
238	48.4	51.7	49.7 4	19.4	43.2	၁	၁	၁	၁	48.8	51.5	C 4	17.9	44.8	C									
243	51.9	C	C C 53.7 55.0 C	53.7	55.0	၁	C	C	50.0	55.2	C C 50.0 55.2 49.2 C 53.1 C C 47.9 51.4	C	53. 1	C	C	C	47.9	51.4						
MEAN	55.1																							
S. D.	5.96																							
Z	7																							

CLI ENI: NI PEKA,		INC.						M	IN HI	CKEL	SULFA	HE HE	WITH NICKEL SULFATE HEXAHYDRATE	KATE								_	DAY	21
ROUP 3:	20 MG/KG/DAY	XG/DA	IV.				[NDI V]	DUAL	F1 P0	P WEI	GHTS	INDIVIDUAL F1 PUP WEIGHTS DURING LACTATION (GRAMS)	G LAC	TATIC	N (GR	(AMS)								
DAM NO.	PUP NO. 1	-	2	3	4	5	9	7	&	6	10	7 8 9 10 11 12 13 14 15 16 17 18 19	12	13	14	15	16	17	18	19	20	21	22	23
198	!			် -	54. 7	58. 1	49. 7	58.5		55. 2	53. 0	49.7 58.5 C 55.2 53.0 C C 53.7 C 51.5		53. 7		51.5	! ! !	! ! !	! ! !	! ! !	1		!	1
205			48.2	၁	47.5	၁	C	၁	47.5	47.4	ပ	42.7	46.7	50.5	45.8	ပ	ပ							
208		54.7	၁	62.2	57.2 C	ပ	60.4	၁	58.0	60.2	61.1	59.8	၁	C										
218			Q	Q	Q	Q	49.6	39.8	51.9	49. 1	ပ	၁	49. 2 38. 0 48. 7 C D 33. 9	38.0	48.7	ပ	Q	33.9						
239			55.9	၁	ပ	၁	၁	52.2	48.3	49.2	48.7	45.1	50.2	၁	ပ	ပ	46.8							
241			47.3	51.9	49.8	50.9	51.3	51.1	47.8															
242	50.4		D	48.4	51.3	D	49.8	၁	၁	53.8	C	53.8 C 47.0 D 55.1 48.3 49.7 C	D	55. 1	48.3	49.7	C							
MEAN																								
S. D.	4. 71																							
Z																								

CLI ENI: INI FERA,		INC.				•		٠,	N HII	CNEL	SULF.	AIE HI	WITH NICKEL SULFAIE HEAAHYDKAIE	KAIE		í						DAI		7
GROUP 4: 30 MG/KG/DAY	30 MG/	KG/D/	\Y				I NDI V	I DUAL	F1 P	UP WE	IGHIS	DURI	INDIVIDUAL FI PUP WEIGHIS DURING LACIATION (GRAMS)	TATI (de N	(AMES)								
DAM NO.	0. PUP NO. 1 MEAN	1	2	3	4	5	9	7	&	6	10	11	7 8 9 10 11 12 13 14 15 16 17 18	13	14	15	16	17	18	19	20	21	22	23
200	1		C .		61. 5	7.3	59.9	C	60.0	58.3	57.0	57.2	54. 2		1	! ! !	! ! !	! ! !	 	 		! ! !	 	
207		Q	Q	53.7	C	၁	52.4	၁	51.3	53.3	၁	51.0	50.7	51.4	53.0									
212		52.8	47.8	57.2	C	8.4	၁	၁	53.5	52.0	၁	55.9	53.9	၁	ပ	ပ	၁							
217		Q	50.1	47.6	47.2	8.2	၁	၁	37.8	ပ	၁	C	၁	၁	48.8	37.9	41.6							
222		Q	Q	Q	Q	Ω	48. 7	၁	Q	47. 1	48.6	51.2	49.4	46.9	49.5	48.0								
230		54.0	ပ	C 52.05	52.0	5.0	48.4	48.4 53.1 5	52.7	ပ	၁	52.2	55.0	၁										
240	46.7	D	41.3	၁	51.0	9. 1	C	46.1	C	47.9	C	43.3	C 47.9 C 43.3 44.6 C 50.4 C	၁	50.4	C								
MEAN	51.0																							
S. D.	4.58																							
Z	7																							

CLI ENI: MI FERA,	I FEMA,	INC.				•		TA		CNE	SOLLY	115 111		WILL NICHEL SULFAIL HEAMILDINAILE								ING		۲,
ROUP 5: 50 MG/KG/DAY	50 MG/	/KG/D,	ΛV				INDIVIDUAL F1 PUP WEIGHTS DURING LACTATION (GRAMS)	I DUAL	F1 PI	JP WEI	GHTS	DURI N	VG LAC	TATI (E) NC	(SAMS)								
DAM NO.	PUP NO. 1 2 MEAN	0. 1	2	က	4	5	9	7	&	6	10	9 10 11 12 13 14 15	12	13	14		16	17 18		19	20	21	22	23
194		_ 	a		40.6	23.4	48.0	39.8	38. 5	47.3	 C	39.9	47.9			: : :	! !	 	! ! !	! ! !	! ! !	! ! !	! !	! !
199		48.4	54.5	၁	Q	51.2	ပ	48.8	49.7	53.9	50.6	ပ	51.8											
202		48. 7	45.7	ပ	55.3	ပ	52.4	၁	၁	48.9	53.2	44.8	၁	50.7	၁	ပ	၁							
215		Q	48.5	51.6	49.0	48. 1	ပ	၁	၁	46.6	48.9	48.5	49.5	ပ										
216		ပ	62.4	55.8	ပ	61.0	56.7	၁	၁	58.2	57.3	54.5	၁	54.4										
226		48.6	ပ	45.2	46.5	၁	38.3	၁	43.1	41.9	43.7	44.0	၁											
232	59.2	61.5	61. 5 64. 4	l C 61.5 60.4	61.5	60.4	၁	C	၁	C	56.2	C C C 56.2 C C 53.6	၁	53.6	53. 6 56. 2 60. 1	60. 1								
MEAN	50.2																							
S. D.	6.67																							
Z	7																							

SLI STUDY NO.: CLIENT: NIPERA,	/ NO. : JI PERA,	3472. 3 I NC.	က			A ON	E- GEN	ERATI	ON REI	AF RODUC CKEL	APPENDIX W UCTION RANG L SULFATE H	A ONE-GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE	- FI ND] XAHYD]	ING ST RATE	TUDY .	IN RA	LS					PAG	PAGE 3 DAY 2	30 21
GROUP 6: 75 MG/KG/DAY	75 MG,	/KG/D	ΑY				I NDI V	I DUAL	FI M	P WEI	SHIS	INDIVIDUAL FI PUP WEIGHIS DUKING LACIATION (GRANS)	r LAC	IAIIO	N (5,8)	AMS)								
DAM NO.	PUP NO. 1 MEAN	0. 1	8	8	4	5	9	7		6	10	7 8 9 10 11 12 13 14 15 16 17 18	12	13	14	15	16	17	18	19	20	21	22	23
197	42.6			36.0	47. 0	45. 1	44. 1	38. 1	41.5	42. 9	46.3	! !	! !	 	 	! !		! ! !	! ! !	! ! !	! ! !	 	! ! !	! ! !
210		Q	Q	61.0	57.8	၁	57.0	61.9	၁	၁	56.1	၁	၁	ပ	59.2	53.8	54.0							
220		Q	Q	52.0	၁	52.9	49.4	C	53. 1	၁	ပ	53.0	46.1	ပ	53.3	54.6	၁							
228		Q	Q	Q	Q	Q	၁	45.5	47.8	44.8	41.2	၁	ر د	48.9	ပ	40.8	42.9	7.3						
235	49.9	51.7	54.0	52.9	55.8	43.5	o	၁	၁	48. 1	45.6	47.5												
244		Q	D	D D C 58.4	၁	58. 4	54. 5	51.2	56.3	၁	၁	54. 5 51. 2 56. 3 C C 50. 0 48. 5 47. 6 49. 0	48.5	47.6	49. 0									
MEAN																								
S. D.	5.39																							
Z																								
D = DEAD PUP C = CULLED PUP	PUP C :	= CUL	LED P	UP	1 1 1	1 1 1 1 1 1	1 1 1 1 1	1		1	1 1 1 1 1			1	1			1 1 1	1 1 1 1	1 1 1 1 1 1	1 1 1	1		1 1 1 1

SLI Study No. 3472.3

APPENDIX X

Individual F1 Pup Gross Necropsy Observations

1	ъ	<u> </u>	Д	<u>a</u>	Q.	Ь	Ь	<u> </u>	Ь	Ь	Ь	Ы	Д :
PAGE	GRADE				DISTAL TAIL DISCOLORED							ODUCTI VE ORGANS	
APPENDIX X A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI PUP GROSS NECROPSY OBSERVATIONS	FOUND DEAD	FOUND DEAD 9/27/98 LACTATION DAY 10 GROSS: MI CROPHTHALMI A	GROSS: RENAL PAPILLA(E) NOT DEVELOPED	GROSS: DISTENDED	CROSS: TAIL - CONSTRICTION MEDIAL PORTION, WITH SKIN SCABBING, DISTAL TAIL DISCOLORED PURPLE	FOUND DEAD 9/13/98 LACTATION DAY 0 GROSS: MLLK NOT PRESENT	FOUND DEAD 9/10/98 LACTATION DAY 0 GROSS: ATELECTASIS	GROSS: MILK NOT PRESENT	FOUND DEAD 9/10/98 LACTATION DAY 0 GROSS: ATELECTASIS	GROSS: MILK NOT PRESENT	FOUND DEAD 9/12/98 LACTATION DAY 0 GROSS: ATELECTASIS	GROSS: TISSUE(S) TOO AUTOLYZED TO EXAMINE INVOLVING ABDOMINAL AND URINARY/REPRODUCTIVE ORGANS	FOUND DEAD 9/12/98 LACTATION DAY 0 GROSS: MLLK NOT PRESENT
A ONE-GENERATION I WITH INDIVIDUAL I		O MG/KG/DAY MALE EYES	KI DNEYS	URETERS	EXT. APPEARANCE	10 MG/KG/DAY MALE STOMACH	20 MG/KG/DAY MALE LUNGS	STOMACH	20 MG/KG/DAY MALE LUNGS	STOMACH	20 MG/KG/DAY MALE a LUNGS	GENERAL COMMENT	20 MG/KG/DAY MALE STOMACH
 		GROUP:				GROUP:	GROUP:		GROUP:		GROUP:		GROUP:
0.: 3472.3 ERA, INC.		219-05				236-01	242-01		242-02		218-01		218-02
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.				ANI MAL NO.	ANI MAL NO.		ANI MAL NO.		ANI MAL NO.		ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT a SEX COULD NOT BE VERIFIED AT NECROPSY DUE TO AUTOLYSIS.

PAGE 2	GRADE	ď	Ы	Ġ.	Ь	Ġ.	1 P	ď	Ь	Ġ.	d	Ъ	<u>۵</u> . ۵.
APPENDLX X A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP GROSS NECROPSY OBSERVATIONS	FOUND DEAD	FOUND DEAD 9/12/98 LACTATION DAY 0 GROSS: ATELECTASIS	GROSS: MILK NOT PRESENT	FOUND DEAD 9/13/98 LACTATION DAY 0 GROSS: ATELECTASIS	GROSS: MILK NOT PRESENT	FOUND DEAD 9/12/98 LACTATION DAY 0 GROSS: ATELECTASIS	GROSS: MILK NOT PRESENT GROSS: DISTENDED LEFT	FOUND DEAD 9/12/98 LACTATION DAY 0 GROSS: ATELECTASIS	GROSS: MILK NOT PRESENT	FOUND DEAD 9/12/98 LACTATION DAY 0 GROSS: ATELECTASIS	GROSS: MILK NOT PRESENT	FOUND DEAD 9/13/98 LACTATION DAY 0 GROSS: ATELECTASIS	GROSS: MILK NOT PRESENT GROSS: TISSUE(S) TOO AUTOLYZED TO EXAMINE INVOLVING INTESTINES, KIDNEYS AND URETERS
A ONE-GENERATION WIT INDIVIDUAL		20 MG/KG/DAY MALE LUNGS	STOMACH	20 MG/KG/DAY MALE LUNGS	STOMACH	30 MG/KG/DAY MALE LUNGS	STOMACH URETERS	30 MG/KG/DAY MALE LUNGS	STOMACH	30 MG/KG/DAY MALE LUNGS	STOMACH	30 MG/KG/DAY MALE LUNGS	STOMACH GENERAL COMMENT
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		ANI MAL NO. 241-01 GROUP:		ANI MAL NO. 177-01 GROUP:		ANI MAL NO. 207-01 GROUP:		ANI MAL NO. 207-02 GROUP:		ANI MAL NO. 217-01 GROUP:		ANI MAL NO. 200-01 GROUP:	

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

PAGE 3	GRADE	- - - - - - - - -	- 0.0		₽ Ø	d d
APPENDIX X E-GENERATI ON REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP GROSS NECROPSY OBSERVATIONS	FOUND DEAD	FOUND DEAD 9/16/98 LACTATION DAY 0 GROSS: ATELECTASIS ALL LOBES CROSS: MITH NOT DESCRIT	FOUND DEAD 9/16/98 LACTATION DAY 0 GROSS: ATELECTASIS ALL LOBES CPOSS: MITK NOT DEFENT		UNDEVELOPED, ANAL ATRESIA, THORACIC VISCERA HYPOPLASTIC, TAIL EXISTS AS A SMALL FLESHY BUD - NO CAUDAL VERTEBRAE; EXENCEPHALY; OPEN EYELID - RIGHT; ANOPHTHALMIA - LEFT FOUND DEAD 9/11/98 LACTATION DAY 0 GROSS: MILK NOT PRESENT GROSS: DISTENDED BILATERAL	FOUND DEAD 9/12/98 LACTATION DAY 0 GROSS: ATELECTASIS ALL LOBES GROSS: MILK NOT PRESENT
A ONE-GENERATION WIY I NDI VI DUAN		30 MG/KG/DAY MALE LUNGS	30 MG/KG/DAY MALE LUNGS	50 MG/KG/DAY MALE GENERAL COMMENT GENERAL COMMENT MULT. ANOMALIES	50 MG/KG/DAY MALE STOMACH URETERS	75 MG/KG/DAY MALE LUNGS STOMACH
. 3 		GROUP:	GROUP:	GROUP:	GROUP:	GROUP:
10.: 3472.3 PERA, INC.		222-01	222-02	194-01	215-01	213-01
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

4	GRADE	Ь	Ь	Ь	А	<u>а</u> а	Ь	Ь	Ь	А	А	Ф
APPENDIX X A ONE- GENERATI ON REPRODUCTI ON RANGE- FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP GROSS NECROPSY OBSERVATI ONS	FOUND DEAD	FOUND DEAD 9/12/98 LACTATION DAY 0 GROSS: ATELECTASIS ALT TORES	GROSS: MILK NOT PRESENT	FOUND DEAD 9/13/98 LACTATION DAY 0 GROSS: RENAL PAPILLA(E) NOT DEVELOPED	GROSS: ATELETI GROSS: ATELETISS	GROSS: MILK NOT PRESENT GROSS: DISTENDED LEFT, MODERATE; RIGHT, SLIGHT	FOUND DEAD 9/13/98 LACTATION DAY 0 GROSS: ATELECTASIS	GROSS: MILK NOT PRESENT	FOUND DEAD 9/13/98 LACTATION DAY 0 GROSS: ATELECTASIS	GROSS: MILK NOT PRESENT	FOUND DEAD 9/13/98 LACTATION DAY 0 T GROSS: TISSUE(S) TOO AUTOLYZED TO EXAMINE INVOLVING ABDOMINAL AND URINARY/REPRODUCTIVE ORGANS	FOUND DEAD 9/13/98 LACTATION DAY 0 GROSS: RENAL PAPILLA(E) NOT DEVELOPED BILATERAL
A ONE-GENERAT I NDI VI E		75 MG/KG/DAY MALE LUNGS	STOMACH	75 MG/KG/DAY MALE KI DNEYS	TUNGS	STOMACH URETERS	75 MG/KG/DAY MALE LUNGS	STOMACH	75 MG/KG/DAY MALE LUNGS	STOMACH	75 MG/KG/DAY MALE a GENERAL COMMENT	75 MG/KG/DAY MALE KI DNEYS
3472. 3 INC.		GROUP:		GROUP:			GROUP:		GROUP:		GROUP:	GROUP:
		213-02		228-01			228-02		228-03		245-01	245-06
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.		ANI MAL NO.			ANI MAL NO.		ANI MAL NO.		ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT a SEX COULD NOT BE VERIFIED AT NECROPSY DUE TO AUTOLYSIS.

	SLI STUDY NO.: 3472 CLIENT: NIPERA, INC.	3472. 3 INC.		A ONE-GEI	NERATI ON WI TH DI VI DUAL	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP GROSS NECROPSY OBSERVATIONS	PAGE	25
						FOUND DEAD	GRADE)E
Q	245-06	(CONTI NUED)		STOMACH URETERS		GROSS: MILK NOT PRESENT GROSS: DISTENDED BILATERAL		1 Б
• •	213-05	213-05 GROUP:	75 MG/KG/DAY STOM	ACH	MALE	FOUND DEAD 9/13/98 LACTATION DAY 1 GROSS: MLLK NOT PRESENT		Ь
• •	213-06	213-06 GROUP:	75 MG/KG/DAY STOM	ACH	MALE	FOUND DEAD 9/13/98 LACTATION DAY 1 GROSS: MLLK NOT PRESENT		Ь
	213-10	213-10 GROUP:	75 MG/KG/DAY STOM	АСН	MALE	FOUND DEAD 9/13/98 LACTATION DAY 1 GROSS: MILK NOT PRESENT		Ы
	210-01	GROUP:	75 MG/KG/DAY LUNG	S	MALE a	FOUND DEAD 9/13/98 LACTATION DAY 0 GROSS: ATELECTASIS ATT TOBES		Ь
				GENERAL COMMENT	COMMENT	GROSS: TISSUE(S) TOO AUTOLYZED TO EXAMINE INVOLVING ABDOMINAL AND URINARY/REPRODUCTIVE ORGANS	8	Ь
	210-02	GROUP:	75 MG/KG/DAY LUNG	70	MALE a	FOUND DEAD 9/13/98 LACTATION DAY 0 GROSS: ATELECTASIS		Ь
				GENERAL COMMENT	COMMENT	GROSS: TISSUE(S) TOO AUTOLYZED TO EXAMINE INVOLVING ABDOMINAL AND URINARY/REPRODUCTIVE ORGANS	S	Ъ
	197-01	197-01 GROUP:	75 MG/KG/DAY LUNG	S	MALE	FOUND DEAD 9/13/98 LACTATION DAY 0 GROSS: ATELECTASIS ALL TOBES		Ъ
				STOMACH		GROSS: MILK NOT PRESENT		Ъ
	213-07	GROUP:	75 MG/KG/DAY STOM	ACH	MALE	FOUND DEAD 9/14/98 LACTATION DAY 2 GROSS: MLLK NOT PRESENT		Ь

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT a SEX COULD NOT BE VERIFIED AT NECROPSY DUE TO AUTOLYSIS.

9	DE	Ь	1 T	Ь	Ъ	Ь	А	Ь	Ь	Ь	Ь	P :
PAGE	GRADE											
APPENDIX X A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI PUP GROSS NECROPSY OBSERVATIONS	FOUND DEAD	MALE FOUND DEAD 9/14/98 LACTATION DAY 2 S GROSS: RENAL PAPILLA(E) NOT DEVELOPED DIGHT	GROSS: MI GROSS: DI	MALE FOUND DEAD 9/14/98 LACTATION DAY 2 GROSS: PALE	GROSS: MI	MALE FOUND DEAD 9/14/98 LACTATION DAY 2 H GROSS: MILK NOT PRESENT	FEMALE FOUND DEAD 9/11/98 LACTATION DAY 0 GROSS: ATELECTASIS All. 1.0RES	GROSS: MI	FEMALE FOUND DEAD 9/13/98 LACTATION DAY 0 H GROSS: MILK NOT PRESENT	FEMALE a FOUND DEAD 9/12/98 LACTATION DAY 0 GROSS: ATELECTASIS	GENERAL COMMENT GROSS: TISSUE(S) TOO AUTOLYZED TO EXAMINE INVOLVING ABDOMINAL AND URINARY/REPRODUCTIVE ORGANS	FEMALE a FOUND DEAD 9/12/98 LACTATION DAY 0 GROSS: ATELECTASIS ALL LOBES
A ONE-G		75 MG/KG/DAY KI DNEYS	STOMACH URETERS	75 MG/KG/DAY LI VER	STOMACH	75 MG/KG/DAY STOMACH	O MG/KG/DAY LUNGS	STOMACH	10 MG/KG/DAY STOMACH	20 MG/KG/DAY LUNGS	GENERAL	20 MG/KG/DAY LUNGS
% %		GROUP:		GROUP:		GROUP:	GROUP:		GROUP:	GROUP:		GROUP:
0.: 3472.3 ERA, INC.		213-08 GROUP:		213-09		213-11 GROUP:	196-01		236-02 GROUP:	218-03 GROUP:		218-04
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.		ANI MAL NO.		ANI MAL NO.	ANI MAL NO.		ANI MAL NO.	ANI MAL NO.		ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT a SEX COULD NOT BE VERIFIED AT NECROPSY DUE TO AUTOLYSIS.

rs PAGE 7	GRADE	AINE ARY/REPRODUCTIVE ORGANS	DAY 0	DAY 0 P	ON DAY 1 PATINE ARY/REPRODUCTIVE ORGANS	DAY 0 P	DAY 0 P	DAY 0 P
APPENDIX X E-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP GROSS NECROPSY OBSERVATIONS	FOUND DEAD	GROSS: TISSUE(S) TOO AUTOLYZED TO EXAMINE INVOLVING ABDOMINAL AND URINARY/REPRODUCTIVE ORGANS	FOUND DEAD 9/12/98 LACTATION DAY GROSS: NO SIGNIFICANT CHANGES OBSERVED GROSS: a	GROSS: ATELECTASIS ALL LOBES GROSS: MILK NOT PRESENT	FOUND DEAD 9/13/98 LACTATION DAY 1 GROSS: CONTENT ABNORMAL CLEAR FOAMY FLUID GROSS: TISSUE(S) TOO AUTOLYZED TO EXAMINE INVOLVING ABDOMINAL AND URINARY/REPRODUCTIVE ORGANS	GROSS: SUBCUTANEOUS EDEMA AROUND NECK AND HINDLIMBS GROSS: MILK NOT PRESENT	FOUND DEAD 9/16/98 LACTATION DAY GROSS: MLLK NOT PRESENT	FOUND DEAD 9/16/98 LACTATION DAY GROSS: ATELECTASIS ALL LOBES GROSS: MLK NOT PRESENT
A ONE-GENERATION R. WITH : INDIVIDUAL F		(CONTINUED) GENERAL COMMENT	P: 20 MG/KG/DAY FEMALE STOMACH	20 MG/KG/DAY FEMALE LUNGS STOMACH	20 MC/KG/DAY FENALE b TRACHEA GENERAL COMMENT	30 MG/KG/DAY FEMALE SKIN STOMACH	30 MG/KG/DAY FEMALE STOMACH	30 MG/KG/DAY FEMALE LUNGS STOMACH
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.		ANI MAL NO. 218-04 (CON	ANIMAL NO. 218-05 GROUP:	ANIMAL NO. 205-01 GROUP:	ANIMAL NO. 218-16 GROUP:	ANIMAL NO. 240-01 GROUP:	ANI MAL NO. 222-03 GROUP:	ANI MAL NO. 222-04 GROUP:

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT a THE PRESENCE OR ABSENCE OF MILK WAS INADVERTENTLY NOT RECORDED AT NECROPSY. b SEX COULD NOT BE VERIFIED AT NECROPSY DUE TO AUTOLYSIS.

PAGE 8	GRADE	d d l	ር 4 C G C C C A A	G G G T
APPENDIX X A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI PUP GROSS NECROPSY OBSERVATIONS	FOUND DEAD	E FOUND DEAD 9/16/98 LACTATION DAY O GROSS: ATELECTASIS ALL LOBES GROSS: MILK NOT PRESENT GROSS: DISTENDED BILATERAL	GROSS: ANOPHTHALMI A BILATERAL GROSS: RENAL PAPILLA(E) INCOMPLETELY DEVELOPED BILATERAL GROSS: PALE ALL LOBES GROSS: ATELECTASIS ALL LOBES GROSS: MILK NOT PRESENT GROSS: DISTENDED BILATERAL ANT GROSS: BRAIN - UNABLE TO EXAMINE APPARENTLY CANNI BALI ZED GROSS: EXENCEPHALY GROSS: EXENCEPHALY GROSS: RENCEPHALY	E FOUND DEAD GROSS: MI LK NOT PRESENT E FOUND DEAD GROSS: ATELECTASIS ALL LOBES GROSS: MI LK NOT PRESENT GROSS: DI STENDED LEFT
A ONE- GENERATI W I NDI VI DU		30 MG/KG/DAY FEMALE LUNGS STOMACH URETERS	50 MG/KG/DAY FEMALE EYES KI DNEYS LI VER LUNGS STOMACH URETERS GENERAL COMMENT HEAD HEAD	50 MG/KG/DAY FEMALE STOMACH 75 MG/KG/DAY FEMALE LUNGS STOMACH URETERS
D.: 3472.3 ERA, INC.		222-05 GROUP:	194- 02 GROUP:	194- 03 GROUP: 213- 03 GROUP:
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	ANIMAL NO.	ANIMAL NO. ANIMAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

6	DE	Ь	Ь	Д	Ь	Ь	А	Ь	Ь	Ь	Ь	1 P
PAGE	GRADE			LI GHT	NTERRUPTED							
APPENDIX X A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 PUP GROSS NECROPSY OBSERVATIONS	FOUND DEAD	LE FOUND DEAD 9/12/98 LACTATION DAY 0 GROSS: ATTLECTASIS ATT TOBES	GROSS: MILK NOT PRESENT	FOUND DEAD 9/12/98 LACTATION DAY 0 GROSS: TRANSPOSITION OF GREAT VESSELS PULMONARY ARISES FROM LEFT VENTRICLE,	VENTRICLE WITH RETROESOPHAGEAL RIGHT SUBCLAVIAN; INTERRUPTED AORTIC ARCH; INTERVENTRICULAR SEPTAL DEFECT GROSS: ATELECTASIS	ALL LOBES GROSS: MILK NOT PRESENT	FOUND DEA GROSS: AT	ALL LOBES GROSS: MI LK NOT PRESENT	FOUND DEA GROSS: AT	GROSS: MILK NOT PRESENT	FOUND DEA GROSS: AT	GROSS: MILK NOT PRESENT GROSS: DISTENDED LEFT
ENERATI V NDI VI DU		FEMALE	_	FEMALE			FEMALE		FEMALE		FEMALE	
A ONE-G		75 MG/KG/DAY LUNGS	STOMACH	75 MG/KG/DAY HEART	TUNGS	STOMACH	75 MG/KG/DAY LUNGS	STOMACH	75 MG/KG/DAY LUNGS	STOMACH	75 MG/KG/DAY LUNGS	STOMACH URETERS
e 8.		GROUP:		GROUP:			GROUP:		GROUP:		GROUP:	
0.: 3472.3 ERA, INC.		213-04		220-01			220-02		244-02		244-03	
SLI STUDY NO.: CLI ENT: NI PERA,		ANI MAL NO.		ANI MAL NO.			ANI MAL NO.		ANI MAL NO.		ANI MAL NO.	

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

10	洒	Ь	Ь	Д	Ь	Д	Ь	<u>a</u>	Q.
PAGE 1	GRADE								
APPENDIX X A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXARYDRATE INDIVIDUAL FI PUP GROSS NECROPSY OBSERVATIONS	FOUND DEAD	FEMALE FOUND DEAD 9/13/98 LACTATION DAY 0 GROSS: ATELECTASIS ATT TORES	GROSS: MI	FEMALE FOUND DEA GROSS: AT	CH GROSS: MILK NOT PRESENT	FEMALE a FOUND D GROSS: AT	GENERAL COMMENT GROSS: TISSUE(S) TOO AUTOLYZED TO EXAMINE INVOLVING ABDOMINAL AND URINARY/REPRODUCTIVE ORGANS	FEMALE FOUND DEAD 9/13/98 LACTATION DAY 1 CH GROSS: MLLK NOT PRESENT	FEMALE FOUND DEAD 9/14/98 LACTATION DAY 2. CH GROSS: MLLK NOT PRESENT
A ONE		75 MG/KG/DAY LUNGS	STOMACH	75 MG/KG/DAY LUNGS	STOMACH	75 MG/KG/DAY LUNGS	GENER	75 MG/KG/DAY STOMACH	75 MG/KG/DAY STOMACH
3472. 3 INC.		GROUP:		228-05 GROUP:		GROUP:		GROUP:	GROUP:
J.: 347 ERA, INC		228-04		228-05		245-03		213-13 GROUP:	213-12 GROUP:
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.		ANI MAL NO.		ANI MAL NO.		ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT a SEX COULD NOT BE VERIFIED AT NECROPSY DUE TO AUTOLYSIS.

SLI Study No. 3472.3

APPENDIX Y

Individual F1 Survival and Clinical Observations (Positive Findings)

A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS	WI TH NI CKEL SULFATE HEXAHYDRATE	TANDERS THE TATE OF THE CONTRACT AND COUNTRY OF TAXABLE ON THE CONTRACT OF TAXABLE OF TA
3472.3	INC.	
SLI STUDY NO.:	CLI ENT: NI PERA,	
	SLI STUDY NO.: 3472.3 A ONE-GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS	7

PAGE

INDIVIDUAL F1 SURVIVAL AND CLINICAL OBSERVATIONS

(POSI TI VE FINDINGS)

			(ro	(FOST II VE. FINDINGS)
ANIMAL NO.	GROUP	CATEGORY	STUDY DAY	GRADE OBSERVATIONS
192-01 M	0 MG/KG/DAY	DEAD	24	P SCHEDULED EUTHANASIA
196-07 M	O MG/KG/DAY	DEAD	23	P SCHEDULED EUTHANASIA
206-08 M	O MG/KG/DAY	DEAD	24	P SCHEDULED EUTHANASIA
219-03 M		DEAD	29	P SCHEDULED EUTHANASIA
221-02 M	0 MG/KG/DAY	DEAD	24	P SCHEDULED EUTHANASIA
231-01 M		EYES	∞	P CORNEAL OPACITY - RIGHT EYE
		EYES	15	P CORNEAL OPACITY - RIGHT EYE
		EYES	22	P CORNEAL OPACITY - RIGHT EYE
		EYES	24	P CORNEAL OPACITY - RIGHT EYE
		DEAD	24	P SCHEDULED EUTHANASIA
233-03 M	O MG/KG/DAY	DEAD	25	P SCHEDULED EUTHANASIA
237-06 M	O MG/KG/DAY	DEAD	23	P SCHEDULED EUTHANASIA
188-02 M	10 MG/KG/DAY	DEAD	26	P SCHEDULED EUTHANASIA
195-08 M	10 MG/KG/DAY	DEAD	24	P SCHEDULED EUTHANASIA
224-06 M	10 MG/KG/DAY	DEAD	25	P SCHEDULED EUTHANASIA
234-05 M	10 MG/KG/DAY	DEAD	23	P SCHEDULED EUTHANASIA
234-07 M	10 MG/KG/DAY	DEAD	23	P SCHEDULED EUTHANASIA
236-06 M	10 MG/KG/DAY	DEAD	25	P SCHEDULED EUTHANASIA
238-02 M	10 MG/KG/DAY	DEAD	22	P SCHEDULED EUTHANASIA
243-09 M	10 MG/KG/DAY	DEAD	24	P SCHEDULED EUTHANASIA
198-07 M	20 MG/KG/DAY	DEAD	23	P SCHEDULED EUTHANASIA
205-08 M	20 MG/KG/DAY	DEAD	24	P SCHEDULED EUTHANASIA
208-06 M	20 MG/KG/DAY	DEAD	22	P SCHEDULED EUTHANASIA
218-06 M	20 MG/KG/DAY	DEAD	24	P SCHEDULED EUTHANASIA
218-09 M	20 MG/KG/DAY	DEAD	24	P SCHEDULED EUTHANASIA
239-08 M	20 MG/KG/DAY	DEAD	22	P SCHEDULED EUTHANASIA
241-03 M	20 MG/KG/DAY	DEAD	24	P SCHEDULED EUTHANASIA
242-04 M	20 MG/KG/DAY	DEAD	22	P SCHEDULED EUTHANASIA
200-04 M	30 MG/KG/DAY	DEAD	25	P SCHEDULED EUTHANASIA

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

APPENDI X Y	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS	WITH NICKEL SULFATE HEXAHYDRATE
	3472.3	INC.
	SLI STUDY NO.:	CLI ENT: NI PERA,

INDIVIDUAL F1 SURVIVAL AND CLINICAL OBSERVATIONS

~

PAGE

(POSI TI VE FINDINGS)

	m
	RIGHT EYE
GRADE OBSERVATIONS	P SCHEDULED EUTHANASIA
STUDY DAY	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
CATEGORY	DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD
GROUP	30 MG/KG/DAY 30 MG/KG/DAY 30 MG/KG/DAY 30 MG/KG/DAY 30 MG/KG/DAY 30 MG/KG/DAY 50 MG/KG/DAY 75 MG/KG/DAY
ANIMAL NO.	200-05 M 212-05 M 212-05 M 222-10 M 223-06 M 240-04 M 199-02 M 215-02 M 215-02 M 215-05 M 215-05 M 216-05 M 226-06 M 226-06 M 215-02 M 226-06 M 226-06 M 226-06 M 226-06 M 232-04 M 232-04 M 232-03 M 232-03 M 233-05 M

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

APPENDI X Y	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS	WI TH NI CKEL SULFATE HEXAHYDRATE	
	3472.3	, INC.	
	SLI STUDY NO.:	CLI ENT: NI PERA,	

3

PAGE

INDIVIDUAL F1 SURVIVAL AND CLINICAL OBSERVATIONS

(POSI TI VE FINDINGS)

GRADE OBSERVATIONS	P SCHEDULED EUTHANASIA	
STUDY DAY	4 4 8 4 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8	
CATEGORY	DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD	
GROUP	75 MG/KG/DAY 0 MG/KG/DAY 0 MG/KG/DAY 0 MG/KG/DAY 0 MG/KG/DAY 0 MG/KG/DAY 10 MG/KG/DAY 10 MG/KG/DAY 10 MG/KG/DAY 10 MG/KG/DAY 10 MG/KG/DAY 10 MG/KG/DAY 10 MG/KG/DAY 10 MG/KG/DAY 10 MG/KG/DAY 20 MG/KG/DAY	
ANIMAL NO.	244 05 M 192-16 F 206-12 F 219-09 F 221-16 F 233-08 F 237-10 F 234-14 F 236-14 F 236-14 F 236-15 F 236-15 F 236-15 F 236-16 F 236-17 F 236-17 F 236-18 F 236-18 F 236-18 F 236-18 F 236-18 F 236-18 F 236-18 F 205-18 F 205-18 F 205-18 F 205-18 F 205-18 F 205-18 F 205-18 F 205-18 F 206-11 F 206-11 F 218-16 F	

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

APPENDI X Y	A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS	WI TH NI CKEL SULFATE HEXAHYDRATE	****
	3472.3	INC.	
	SLI STUDY NO.:	CLI ENT: NI PERA,	

PAGE

INDIVIDUAL F1 SURVIVAL AND CLINICAL OBSERVATIONS

(POSITIVE FINDINGS)

ANTMAI NO	CDOID	٩	CATECODV	CTIIDV DAV	ם	CPANE OBSEDVATIONS	
ANTIMAL NO	האטר.	- I	CALEGORI	SIUDI DAI	ָלצּל :	ADE UBSEKVAIIONS	
207-13 F		MG/KG/DAY	DEAD	24	Ь	SCHEDULED EUTHANASI A	
212-12 F		MG/KG/DAY	DEAD	23	Ь	SCHEDULED EUTHANASIA	
217-16 F	30 MG/K	MG/KG/DAY	DEAD	24	Ь	SCHEDULED EUTHANASIA	
222-12 F	30 MG/K	MG/KG/DAY	DEAD	28	Ь	SCHEDULED EUTHANASIA	
222-13 F	30 MG/K	G/DAY	DEAD	28	Ь	SCHEDULED EUTHANASIA	
230-11 F	30 MG/K	MG/KG/DAY	DEAD	24	Ь	SCHEDULED EUTHANASIA	
240-11 F		MG/KG/DAY	DEAD	23	Ь	SCHEDULED EUTHANASIA	
194-07 F		MG/KG/DAY	DEAD	23	Ь	SCHEDULED EUTHANASIA	
194-12 F		MG/KG/DAY	DEAD	23	Ь	SCHEDULED EUTHANASIA	
199-09 F		MG/KG/DAY	POST- DOSE OBS	23	Ь	SALI VATI ON	
			DEAD	24	Ь	SCHEDULED EUTHANASIA	
202-10 F	50 MG/K	G/DAY	DEAD	23	Ь	SCHEDULED EUTHANASIA	
215-12 F	50 MG/K	G/DAY	DEAD	23	Ь	SCHEDULED EUTHANASIA	
216-11 F	50 MG/K	G/DAY	DEAD	25	Ь	SCHEDULED EUTHANASIA	
226-08 F	50 MG/K	G/DAY	DEAD	56	Ь	SCHEDULED EUTHANASIA	
232-10 F	50 MG/K	G/DAY	DEAD	56	Ь	SCHEDULED EUTHANASIA	
197-07 F	75 MG/KG/DAY	G/DAY	POST- DOSE OBS	15	Ь	SALI VATI ON	
			POST- DOSE OBS	17	Ь	SALI VATI ON	
			DEAD	25	Ь	SCHEDULED EUTHANASIA	
210-14 F	75 MG/K	MG/KG/DAY	DEAD	25	Ь	SCHEDULED EUTHANASI A	
210-16 F		MG/KG/DAY	DEAD	25	Ь	SCHEDULED EUTHANASIA	
220-14 F	75 MG/K	G/DAY	DEAD	24	Ь	SCHEDULED EUTHANASIA	
228-15 F	75 MG/K	MG/KG/DAY	DEAD	24	Ь	SCHEDULED EUTHANASI A	
235-10 F		MG/KG/DAY	DEAD	23	Ь	SCHEDULED EUTHANASIA	
235-11 F		MG/KG/DAY	DEAD	23	Ь	SCHEDULED EUTHANASI A	
244-11 F		MG/KG/DAY	DEAD	24	Д	_	

GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-SEVERE, P-PRESENT

SLI Study No. 3472.3

APPENDIX Z

Individual F1 Body Weight Data

PAGE 1												
APPENDIX Z A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI BODY WEIGHT DATA (GRAMS)	FBW	196	203	211	186	230	231	227	226	214	17.3	8
RATION REPROD WITH NICKE NDIVIDUAL FI	4	180	196	197	137	216	210	200	217	194	26. 1	&
A ONE-GENE	က	124	135	140	06	145	147	135	147	133	19.0	∞
	~ ~	74	98	88	53	88	83	78	88	80	12. 1	∞
.: 3472.3 RA, INC. MG/KG/DAY	1	50	53	22	В	61	53	58	53	55	3.8	7
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC. GROUP 1: 0 MG/KG/DAY	WEEK	192-01 M	196-07 M	206-08 M	219-03 M	221-02 M	231-01 M	233-03 M	237-06 M	MEAN	S. D.	N

NOTE: FBW = FINAL BODY WEIGHT. a BODY WEIGHT WAS NOT RECORDED.

PAGE 2													
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI BODY WEIGHT DATA (GRANS)		FBW	256	220	213	225	233	240	В	227	231	14.2	7
ERATION REPRO WITH NICH NDIVIDUAL F		4	217	808	193	216	230	215	228	212	215	11.6	8
A ONE-GENI		8	141	147	130	153	161	146	166	147	149	11.3	∞
		2		91	78	91	26	88	102	88	91	6.9	∞
.: 3472.3 RA, INC.	MG/KG/DAY	1	70	62	59	64	58	99	54	09	62	5.0	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 2: 10	WEEK 1	188-02 M	195-08 M	224-06 M	234-05 M	234-07 M	236-06 M	238-02 M	243-09 M	MEAN	S. D.	N

NOTE: FBW = FINAL BODY WEIGHT.

a FINAL BODY WEIGHT RECORDED ON WEEK 4 (SCHEDULED EUTHANASIA).

PAGE 3													
APPENDIX Z A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL ET RODY WETCHT DATA (CRANS)	(GWAND) ALEG THE LAW TOOL TO	FBW	225	190	а	214	193	а	231	а	211	18.5	J.
NERATION REP	TWINTENDE	4	216	177	240	201	179	212	217	221	208	21.4	∞
A ONE-GE		က	148	124	170	139	132	153	143	159	146	14.8	8
	~.	2			106	85	81	91	87	97	88	8 .6	∞
.: 3472.3 RA, INC.	MG/KG/DAY	-	58	48	62	53	53	51	26	53	54	4.3	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 3: 20	WEEK 1	198-07 M	205-08 M	208-06 M	218-06 M	218-09 M		241-03 M	242-04 M	MEAN	S. D.	Z

NOTE: FBW = FINAL BODY WEIGHT.

a FINAL BODY WEIGHT.

CHANASIA).

PAGE 4														
APPENDIX Z ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL ET BODY WEIGHT DATA (CDAME)	DODI WEIGHT DATA (GRAND)	FBW	240	210	230	250	214	224	231	212	226	14. 2	∞	
RATION REPROM WITH NICKI	NDI VI DOME FI	4	214	188	213	237	197	168	211	204	204	20.4	∞	
A ONE-GENE	-	ဇ	149	135	147	170	134	103	141	148	141	19.0	8	
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	MG/KG/DAY	8	68	81	87	101	92	54	82	88	82	13.6	∞	FBW = FI NAL BODY WEI GHT.
		-	65	61	55	62	51	51	52	55	57	5.5	∞	FINAL BO
	GROUP 4: 30 MG/KG/DAY	WEEK	200-04 M	200-05 M	207-08 M	212-05 M	217-04 M	222-10 M	230-06 M	240-04 M	MEAN	S. D.	N	NOTE: FBW =

APPENDIX Z ONE- GENERATION REPRODUCTION RANGE- FINDING STUDY IN RATS WITH NICKEL SULFATE HEARHYDRATE	INDIVIDUAL FI BUDY WEIGHI DAIA (GRAMS)													
APPENDIX Z TON REPRODUCTION RANGE-FINDING S WITH NICKEL SULFATE HEXAHYDRATE	BODY WEIGH	FBW	149	225	234	218	229	230	176	231	212	31.5	∞	
RATI ON REPRO	NDI VI DUAL FI	4	142	208	224	208	217	209	153	204	196	30. 5	∞	
A ONE-GENE	-	3	94	148	156	146	149	143	100	139	134	23.6	∞	
ж.	>	8	1	88	93	88	87	82	22	85	79	16.2	∞	DY WEI GHT.
.: 3472.3 RA, INC.	MG/KG/DAY	-	26	59	59	52	52	65	40	29	53	13. 7	∞	FBW = FINAL BODY WEIGHT.
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 5: 50	WEEK 1	194-05 M	199-02 M	202-04 M	215-02 M	215-05 M	216-05 M	226-06 M	232-04 M	MEAN	S. D.	Z	NOTE: FBW =

PAGE 7													
APPENDIX Z A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 BODY WEIGHT DATA (GRAMS)	FBW	158	185	161	169	160	164	157	156	164	9.6	&	
RATION REPRODI WITH NICKEI NDIVIDUAL FI	4	151	178	152	135	159	153	150	156	154	11.9	&	
A ONE-GENE	3	116	140	120	91	122	120	114	119	118	13.4	∞	
	2	-	88	78	53	83	75	72	92	75	10.4	∞	
.: 3472.3 RA, INC. MG/KG/DAY	1	50	56	57	В	58	20	56	47	53	4.3	7	
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC. GROUP 1: 0 MC/KG/DAY	WEEK	192-16 F	196-14 F	206-12 F	219-09 F	221-16 F	231-10 F	233-08 F	237-14 F	MEAN	S. D.	N	

NOTE: FBW = FINAL BODY WEIGHT. a BODY WEIGHT WAS NOT RECORDED.

PAGE 8													
APPENDIX Z A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL BI RODY WEIGHT DATA (CRANS)	(Guzun) uzun impin ingo	FBW	197	156	179	175	175	174	а	168	175	12.3	7
ERATI ON REPR WITH NIC		4	185	146	167	169	164	163	177	161	167	11.5	∞
A ONE-GEN		8	136	118	124	131	124	127	141	129	129	7.3	∞
		2		75	92	87	80	82	96	86	84	7.0	∞
: 3472.3 .RA, INC.	MG/KG/DAY	-	72	20	61	28	64	62	53	28	09	8.9	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 2: 10	WEEK 1	188-06 F	195-10 F	224-10 F	234-14 F	236-14 F	236-15 F	238-10 F	243-12 F	MEAN	S. D.	N

NOTE: FBW = FINAL BODY WEIGHT.

a FINAL BODY WEIGHT RECORDED ON WEEK 4 (SCHEDULED EUTHANASIA).

PAGE 9													
APPENDIX Z A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDIAL BI RODY WELGHT DATA (CRAMS)		FBW	154	153	161	а	159	а	170	В	159	6.8	ĸ
ERATION REPR WITH NIC		4	155	147	155	165	159	157	162	180	160	9. 7	8
A ONE-GEN		8	121	1111	115	137	122	127	127	142	125	10.4	8
		2		71	71	6	75	85	85	88	82	9. 7	8
.: 3472.3 RA, INC.	MG/KG/DAY	-	53	48	47	62	52	52	55	48	52	4.9	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 3: 20	WEEK	198-15 F	205-12 F	205-14 F	208-11 F	218-14 F	239-12 F	241-05 F	242-11 F	MEAN	S. D.	N

NOTE: FBW = FINAL BODY WEIGHT.

a FINAL BODY WEIGHT RECORDED ON WEEK 4 (SCHEDULED EUTHANASIA).

PAGE 12														
A ONE- GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NI CKEL SULFATTE HEXAHYDRATE TAXABLE TAXABLE TO BE THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TAXABLE TO THE TAXABLE	INDIVIDUAL FI BODI WELGHI DAIA (GRAWS)	FBW	120	204	171	178	148	144	160	145	159	25.6	∞	
ATTI ON REPRODI WITH NI CKEI	NDIVIDUAL FI F	4	109	191	163	169	139	139	163	136	151	25.3	∞	
A ONE-GENER		က	88	138	122	129	101	114	129	107	116	16.7	∞	
ಣ	X	8	57	85	74	79	61	77	83	72	74	10.0	∞	FBW = FINAL BODY WEIGHT.
.: 3472. RA, INC.	MG/KG/DA		41	64	22	22	42	48	20	51	51	7.9	∞	FINAL BO
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 6: 75 MG/KG/DAY	WEEK	197-07 F	210-14 F	210-16 F	220-14 F	228-15 F	235-10 F	235-11 F	244-11 F	MEAN	S. D.	Z	NOTE: FBW =

APPENDIX AA

Individual F1 Body Weight Gain Data

	CLI ENI: NI PEKA, INC.		WITH NICKEL SULFATE HEXAHYDRATE	
GROUP 1: 0 MG/KG/DAY	AG/KG/DAY		INDIVIDUAL FI BODI WEIGHI GAIN DAIA (GRAWS)	
WEEK	1 T0 2	2 TO 3	3 T0 4	
192-01 M	24	50	26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
196-07 M	33	49	61	
206-08 M	32	51	57	
219-03 M	а	37	47	
221-02 M	27	57	71	
231-01 M	30	64	63	
233-03 M	20	57	65	
237-06 M	35	59	70	
MEAN	59	53	61	
S. D.	5.3	8. 2	7.9	
Z	7	∞	∞	

PAGE 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
APPENDIX AA A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 BODY WEIGHT GAIN DATA (GRAMS)	3 T0 4	76	61	63	63	69	69	62	65	99	5.0	∞
	2 TO 3	52	56	52	62	64	57	64	28	28	4.9	∞
.: 3472.3 RA, INC. MG/KG/DAY	1 T0 2	19	29	19	27	39	23	48	29	29	10.0	∞
SLI STUDY NO.: 3472.3 CLIENT: NI PERA, INC. GROUP 2: 10 MG/KG/DAY	WEEK 1 TO 2	188-02 M	195-08 M	224-06 M	234-05 M	234-07 M	236-06 M	238-02 M	243-09 M	MEAN	S. D.	Z

ONE- GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE THE STATE OF THE S	INDIVIDUAL FI BUDY WEIGHI GAIN DAIA (GRANS)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
A ONE- GENERA	I NDI V	3 T0 4	89	53	70	62	47	59	74	62	62	8.9	
		2 TO 3	57	49	64	57	51	62	56	62	57	5.3	•
3472.3 INC.	MG/KG/DAY	1 TO 2	33	27	44	29	28	40	31	44	35	7. 1	(
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 3: 20 MG/KG/DAY	WEEK 1 TO 2	198-07 M	205-08 M	208-06 M	218-06 M	218-09 M	239-08 M	241-03 M	242-04 M	MEAN	S. D.	

SLI STUDY NO.: 3472.3	3472. 3		A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SILFATF HEXAHYDRATF	PAGE	4
	, INC.		INDIVIDUAL FI BODY WEIGHT GAIN DATA (GRAMS)		
GROUP 4: 30 MG/KG/DAY	MG/KG/DAY				
WEEK 1	1 T0 2	2 TO 3	3 TO 4		
200-04 M	24	09	65		
200-05 M	20	54	53		
207-08 M	32	09	99		
212-05 M	39	69	67		
217-04 M	25	28	63		
222-10 M	က	49	65		
230-06 M	30	59	70		
240-04 M	34	59	56		
	56	59	63		
	11.1	5.7	5.7		
	8	∞	- ∞		

NO I PE 50 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RA, INC. MG/KG/DAY 1 TO 2	2 TO 3	A ONE-GENERATION REPRODUCTION RANGE FINDING STUDY IN RATS WITH NICKEL SULEATE HEXAHYDRATE INDIVIDUAL F1 BODY WEIGHT GAIN DATA (GRAMS) 3 TO 4	PAGE	τ c
199-02 M	°20	20	P C C		
202-02 M 202-04 M	34	63	89		
215-02 M	36	58	62		
215-05 M	35	62	89		
	20	58	99		
226-06 M	15	45	53		
232-04 M	15	57	65		
MEAN	26	56	61		
S. D.	8.8	7.5	7.3		
N	∞	∞	∞		

ONE- GENERATI ON REPRODUCTI ON RANGE- FI NDING STUDY IN RATS WITH NI CKEL SULFAFT HEXAHYDRATE TANDALD FIRE FIRE OF THE STAND PARTS TANDALD FIRE FIRE OF THE STAND PARTS TANDALD FIRE FIRE FIRE FIRE FIRE FIRE FIRE FIRE	INDIVIDUAL FI BODI WELGHI GALN DAIA (GRAMS)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
A ONE- GENERATI ON REPRODU WITH NICKEL	INDIVIDUAL FI BOD	3 TO 4	47	70	71	61	09	54	32	89	58	13.3	œ
		2 TO 3	44	58	61	28	53	55	38	53	53	7.8	œ
: 3472.3 A, INC.	MG/KG/DAY	1 TO 2	19	21	29	32	26	36	31	24	27	5.8	œ
SLI STUDY NO.: CLI ENT: NI PERA,	GROUP 6: 75 MG/KG/DAY	WEEK 1 TO 2	197-05 M	210-04 M	220-03 M	228-08 M	228-09 M	235-02 M	235-05 M	244-05 M	MEAN	S. D.	Z

CLI ENT: NI PERA, INC.	RA, INC.		WITH NICKEL SULFATE HEXAHYDRATE	
GROUP 1: 0 MG/KG/DAY	MG/KG/DAY		INDIVIDUAL FI BUDY WEIGHI GAIN DAIA (GRAND)	
WEEK	1 TO 2	2 TO 3	3 TO 4	
192-16 F	24	42	35	
196-14 F	33	51	38	
206-12 F	21	42	32	
219-09 F	а	38	44	
221-16 F	25	39	37	
231-10 F	25	45	33	
233-08 F	16	42	36	
237-14 F	53	43	37	
MEAN	25	43	37	
S. D.	5.4	4.0	3.7	
Z	7	∞	∞	

PAGE 8												
APPENDIX AA A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI BODY WEIGHT GAIN DATA (GRAMS)	3 T0 4	49	28	43	38	40	36	36	32	38	<u>ර</u> ුග	∞
	2 TO 3	47	43	48	44	44	45	45	43	45	1.8	∞
ERA, INC.	1 TO 2	17	25	15	29	16	20	43	28	24	9.4	∞
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.	GROUP Z: 10	188-06 F	195-10 F	224-10 F	234-14 F	236-14 F	236-15 F	238-10 F	243-12 F	MEAN	S. D.	Z

NG STUDY IN RATS PAGE 9 ATE	A (GKAND)												
A ONE-GENERATI ON REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE TANDALL FOR SULF OF STANDARY (CONTROLLY)	INDIVIDUAL FI BODI WELGHI GALIN DAI	3 TO 4	34	36	40	28	37	30	35	38	35	4.0	8
		2 TO 3	41	40	44	40	47	35	45	54	43	5.7	∞
.: 3472.3 RA, INC.	MG/KG/DAY	1 TO 2	27	23	24	35	23	40	27	40	30	7.3	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 3: 20	WEEK 1 TO 2	198-15 F	205-12 F	205-14 F	208-11 F	218-14 F	239-12 F	241-05 F	242-11	MEAN	S. D.	N

ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL E1 DODY WETCHT CAIN DATA (CDAME)	INDIVIDUAL FI BODI WEIGHI GAIN DAIA (GRAMS)												
A ONE-GENERATION REF	INDIVIDORE FI	3 T0 4	38	32	29	40	41	41	29	25	34	6.4	œ
		2 TO 3	42	51	48	49	43	38	45	42	45	4.3	œ
: 3472.3 A, INC.	MG/KG/DAY	1 T0 2	15	25	30	30	5	3	23	88	20	10.9	œ
SLI STUDY NO.: CLI ENT: NI PERA,	GROUP 4: 30 MG/KG/DAY	WEEK	200-12 F	207-13 F	212-12 F	217-16 F	222-12 F	222-13 F	230-11 F	240-11 F	MEAN	S. D.	

	ANGE-FINDING STUDY IN KAIS 3. HEXAHYDRATE	r gain data (grams)													
	A ONE-GENEKATION KEPRODUCTION KANGE-FINDING STUDY IN KATS WITH NICKEL SULFATE HEXAHYDRATE	INDIVIDUAL F1 BODY WEIGHT GAIN DATA (GRAMS)		3 TO 4	34	26	30	35	44	40	41	38	36	6.0	∞
				2 TO 3	42	29	47	20	48	49	41	38	43	7.1	∞
0	.: 3472.3 RA, INC.		MG/KG/DAY	1 T0 2	27	28	24	30	28	20	13	10	23	7.5	∞
011	SLI STUDY NO.: CLI ENT: NI PERA,		GROUP 5: 50 MG/KG/DAY	WEEK 1 TO 2	194-07 F	194-12 F	199-09 F	202-10 F	215-12 F	216-11 F	226-08 F	232-10 F	MEAN	S. D.	N

PAGE 12													
A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATH HEXAHYDRATE TABLET TO THE STANDING STUDY OF THE STUDY OF THE STANDING STUDY	INDIVIDUAL FI BUDI WELGHI GAIN DAIA (GRAMS)	3 T0 4	21	53	41	40	38	25	34	29	35	10. 2	∞
		2 TO 3	31	53	48	20	40	37	46	35	43	7.9	∞
: 3472.3 RA, INC.	MG/KG/DAY	1 T0 2	16	21	17	22	19	29	33	21	22	5.9	∞
SLI STUDY NO.: 3472.3 CLIENT: NIPERA, INC.	GROUP 6: 75 MG/KG/DAY	WEEK	i I	210-14 F	210-16 F	220-14 F	228-15 F	235-10 F	235-11 F	244-11 F	MEAN	S. D.	N

APPENDIX BB

Individual F1 Gross Necropsy Observations

PAGE 1	GRADE		ፈ ፈ	ď			ů.			ď
		. 24	. 53	24 01 NT	. 29	. 24	. 24	. 25	. 23	56
DING STUDY IN RATS DRATE SERVATIONS		EUTHANASIA 10/25/98 STUDY DAY SI GNIFI CANT CHANGES OBSERVED	EUTHANASIA 10/24/98 STUDY DAY ALL LOBES; RED AND LIGHT RED NTENT ABNORMAL SMALL AMOUNT OF WHITE FOAM	EUTHANASIA 10/25/98 STUDY DAY 24 TTED RIGHT; CORTICAL SURFACE; FEW; PINPOINT	10/30/98 STUDY DAY CHANGES OBSERVED	10/25/98 STUDY DAY CHANGES OBSERVED	10/25/98 STUDY DAY	10/26/98 STUDY DAY CHANGES OBSERVED	10/24/98 STUDY DAY CHANGES OBSERVED	10/27/98 STUDY DAY
APPENDIX BB A ONE- GENERATI ON REPRODUCTI ON RANGE- FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA GROSS: NO SI GNI FI CANT	SCHEDULED EUTHANASIA GROSS: MOTTLED ALL LOBES; RED GROSS: CONTENT ABNORMAL SMALL AMOUNT 0	SCHEDULED EUTHANASIA GROSS: PITTED RIGHT; CORTI	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: OPACITY RIGHT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: TAIL BENT PROXIMAL TAIL
GENERATI ON WI T I NDI VI DU		MALE	MALE ; EA	MALE .YS	MALE	MALE	MALE	MALE	MALE	MALE APPEARANCE
A ONE		0 MG/KG/DAY	O MG/KG/DAY LUNGS TRACHEA	O MG/KG/DAY KI DNEYS	O MG/KG/DAY	O MG/KG/DAY	O MG/KG/DAY EYES	O MG/KG/DAY	O MG/KG/DAY	10 MG/KG/DAY EXT.
		GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:
J.: 3472. ERA, INC.		192-01	196-07	206-08	219-03	221-02	231-01	233-03	237-06	188-02
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

PAGE 2	GRADE					X b b			ત્ય	
APPENDIX BB A ONE- GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA 10/25/98 STUDY DAY 24 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/26/98 STUDY DAY 25 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/24/98 STUDY DAY 23 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/24/98 STUDY DAY 23 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/26/98 STUDY DAY 25 GROSS: PITTED LEFT; CORTI CAL SURFACE; ONE; O. 1 CM DIAMETER GROSS: GRAY AREA(S) CAPSULAR SURFACE; MULTI PLE; UP TO 0. 5 CM DIAMETER; SLIGHTLY RAISED	SCHEDULED EUTHANASIA 10/23/98 STUDY DAY 22 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/25/98 STUDY DAY 24 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/24/98 STUDY DAY 23 GROSS: DILATED PELVIS RIGHT	SCHEDULED EUTHANASIA 10/25/98 STUDY DAY 24 GROSS: NO SIGNIFICANT CHANGES OBSERVED
GENERATI I INDIVI		MALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE
A ONE-(10 MG/KG/DAY	10 MG/KG/DAY	10 MG/KG/DAY	10 MG/KG/DAY	10 MG/KG/DAY KI DNEYS SPLEEN	10 MG/KG/DAY	10 MG/KG/DAY	20 MG/KG/DAY KI DNEYS	20 MG/KG/DAY
3.3		GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:
.: 3472.3 RA, INC.		195-08 GROUP:	224-06	234-05	234-07	236-06	238-02	243-09 GROUP:	198-07	205-08
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.				

SLI STUDY NO.: CLIENT: NIPERA,		3472. 3 INC.	A ONE-G	GENERATI ON WI TH INDI VI DUA	APPENDIX BB A ONE- GENERATI ON REPRODUCTI ON RANGE- FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI GROSS NECROPSY OBSERVATIONS	ING STUDY IN RATS RATE ERVATIONS	PAGE	ო
					SCHEDULED EUTHANASIA		GRA	GRADE
ANI MAL NO.	208-06	GROUP:	20 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT (EUTHANASIA 10/23/98 STUDY DAY 2 SI GNI FI CANT CHANGES OBSERVED	22	1 1 1 1 1
ANI MAL NO.	218-06	GROUP:	20 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT (10/25/98 STUDY DAY 2 CHANGES OBSERVED	24	
ANI MAL NO.	218-09	GROUP:	20 MG/KG/DAY LUNGS	MALE	SCHEDULED EUTHANASIA 10/25/98 GROSS: MOTTLED ALL LOBES; DARK RED AND	STUDY DAY	24	А
ANI MAL NO.	239-08	GROUP:	20 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT (10/23/98 STUDY DAY 2 CHANGES OBSERVED	22	
ANI MAL NO.	241-03	GROUP:	20 MG/KG/DAY SPLEEN	MALE	SCHEDULED EUTHANASIA GROSS: GRAY AREA(S) CAPSULAR SURF/ RAI SED	EUTHANASIA 10/25/98 STUDY DAY 24 AY AREA(S) CAPSULAR SURFACE; MULTIPLE; UP TO 0.2 CM DIAMETER; RAISED	24 2 CM DI AMETER; SLIGHTLY	А
ANI MAL NO.	242-04	GROUP:	20 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT (EUTHANASIA 10/23/98 STUDY DAY 2 SI GNIFI CANT CHANGES OBSERVED	22	
ANI MAL NO.	200-04	GROUP:	30 MG/KG/DAY	MALE	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT (10/26/98 STUDY DAY 2 CHANGES OBSERVED	25	
ANIMAL NO.	200-05	GROUP:	30 MG/KG/DAY KI DNEYS EXT. AP	MALE .YS APPEARANCE	SCHEDULED EUTHANASIA GROSS: DI LATED PELVI S RIGHT GROSS: TAIL BENT	10/26/98 STUDY DAY 2	25	1 P
ANI MAL NO.	207-08	GROUP:	30 MG/KG/DAY LUNGS	MALE	DISTAL TIP SCHEDULED EUTHANASIA GROSS: NODULE(S) ALL LOBES; SEV	DISTAL TIP EUTHANASIA 10/25/98 STUDY DAY 24 DULE(S) ALL LOBES; SEVERAL; UP TO 0.1 CM DIAMETER; FIRM; TAN	24 .METER; FIRM; TAN	<u>d</u>

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

4	ш			ď						Д.
	GRADE	: — : :								
PAGE		TER; SLIGHTLY		TER; SLIGHTLY						IRM; TAN
		3 CM DIAME	23	24 1 CM DIAME	28	24	23	23	24	23 DI AMETER; F
TUDY IN RATS IONS		AY AREA(S) CAPSULAR SURFACE; SEVERAL; UP TO 0.3 CM DIAMETER; RAISED	10/24/98 STUDY DAY IANGES OBSERVED	EUTHANASIA 10/25/98 STUDY DAY 24 AY AREA(S) CAPSULAR SURFACE; SEVERAL; UP TO 0.1 CM DIAMETER; RAISED	10/29/98 STUDY DAY CHANGES OBSERVED	10/25/98 STUDY DAY CHANGES OBSERVED	10/24/98 STUDY DAY CHANGES OBSERVED	10/24/98 STUDY DAY CHANGES OBSERVED	10/25/98 STUDY DAY CHANGES OBSERVED	EUTHANASIA 10/24/98 STUDY DAY 23 DULE(S) ALL LOBES; MULTIPLE; UP TO 0.4 CM DIAMETER; FIRM; TAN
TINDING S AHYDRATE OBSERVAT	A	SURFACE;	ANT CHANG	A 10/ SURFACE;	Ε	H	I CH	I CH	I CE	.A 10/ MULTI PL
A ONE-GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	; &	SCHEDULED EUTHANASIA 10/24/98 STUD GROSS: NO SI GNIFI CANT CHANGES OBSERVED	E E	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NODULE(S) ALL LOBES; 1				
ION REPRO WITH NICK IDUAL F1	SCH	GROSS:	SCHI	SCHEDUJ GROSS:	SCHI	SCHEDUI GROSS:	SCHEDUI GROSS:	SCHI	SCHEDUI GROSS:	SCHE
GENERAT I NDI V		 	MALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE
A ONE-		(VED) SPLEEN	30 MG/KG/DAY	30 MG/KG/DAY SPLEEN	30 MG/KG/DAY	30 MG/KG/DAY	30 MG/KG/DAY	50 MG/KG/DAY	50 MG/KG/DAY	50 MG/KG/DAY LUNGS
es .		(CONTI NUED)	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:
O.: 3472.; ERA, INC.		207-08	212-05	217-04	222-10	230-06	240-04	194- 05	199-02	202-04
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

25	GRADE	1 1 1 1 1		<u>a</u>	Ь	А				
PAGE	GR	1 1 1 1 1 1		SLI GHTLY						1 1 1 1 1
A ONE- GENERATI ON REPRODUCTI ON RANGE- FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	E SCHEDULED EUTHANASIA 10/24/98 STUDY DAY 23 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	E SCHEDULED EUTHANASIA 10/24/98 STUDY DAY 23 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/26/98 STUDY DAY 25 GROSS: GRAY AREA(S) CAPSULAR SURFACE; MULTI PLE; UP TO 0.1 CM DI AMETER; RAI SED	E SCHEDULED EUTHANASIA 10/27/98 STUDY DAY 26 GROSS: SCABBING MEDIAL TAIL	E SCHEDULED EUTHANASIA 10/27/98 STUDY DAY 26 GROSS: NODULE(S) ALL LOBES; MULTIPLE; UP TO 0.2 CM DIAMETER; FIRM; TAN	E SCHEDULED EUTHANASIA 10/26/98 STUDY DAY 25 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	E SCHEDULED EUTHANASIA 10/26/98 STUDY DAY 25 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	E SCHEDULED EUTHANASIA 10/25/98 STUDY DAY 24 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	E SCHEDULED EUTHANASIA 10/25/98 STUDY DAY 24 GROSS: NO SIGNIFICANT CHANGES OBSERVED
- GENERA I NDI		MALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE
A ONE		50 MG/KG/DAY	50 MG/KG/DAY	50 MG/KG/DAY SPLEEN	50 MG/KG/DAY SKIN	50 MG/KG/DAY LUNGS	75 MG/KG/DAY	75 MG/KG/DAY	75 MG/KG/DAY	75 MG/KG/DAY
es Si		GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	220-03 GROUP:	GROUP:
: 3472.: A, INC.		215-02	215-05	216-05	226-06	232-04	197-05	210-04	20-03	228-08
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO. 21	ANI MAL NO. 21	ANI MAL NO. 21	ANI MAL NO. 23	ANI MAL NO. 23	ANI MAL NO. 19	ANI MAL NO. 21	ANI MAL NO. 23	ANIMAL NO. 23

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

PAGE 6	GRADE	1				ď			d d	
		24	23	23	24	24 AL	23	24	29	24
DING STUDY IN RATS PRATE SERVATIONS		10/25/98 STUDY DAY	10/24/98 STUDY DAY CHANGES OBSERVED	10/24/98 STUDY DAY CHANGES OBSERVED	EUTHANASIA 10/25/98 STUDY DAY SI GNI FI CANT CHANGES OBSERVED	EUTHANASIA 10/25/98 STUDY DAY 2. NTENT ABNORMAL SMALL AMOUNT OF WHITE MUCOID MATERIAL	10/24/98 STUDY DAY CHANGES OBSERVED	10/25/98 STUDY DAY CHANGES OBSERVED	10/30/98 STUDY DAY	10/25/98 STUDY DAY CHANGES OBSERVED
APPENDIX BB A ONE-GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA GROSS: DILATED PELVIS BILATERAL	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: CONTENT ABNORMAL SMALL AMOUNT 0	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: TAIL BENT PROXIMAL TAIL GROSS: REDDENED FEW	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT
GENERATI ON WI TI I NDI VI DU		MALE	MALE	MALE	MALE	FEMALE	FEMALE	FEMALE	FEMALE APPEARANCE ASTI NAL L. N.	FEMALE
A ONE-		75 MG/KG/DAY KI DNEYS	75 MG/KG/DAY	75 MG/KG/DAY	75 MG/KG/DAY	O MG/KG/DAY VAGINA	O MG/KG/DAY	0 MG/KG/DAY	O MG/KG/DAY EXT. A MEDIAS	0 MG/KG/DAY
8		GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:
J.: 3472.3 ERA, INC.		228-09 GROUP:	235-02	235-05	244- 05	192-16	196-14	206-12	219-09	221-16 GROUP:
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

3E 7	GRADE	ď	Ч	Ь	а						
APPENDIX BB A ONE- GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA 10/25/98 STUDY DAY 24 GROSS: GRAY AREA(S) CAPSULAR SURFACE; MULTIPLE; UP TO 0.1 CM DIAMETER; SLIGHTLY RAISED	SCHEDULED EUTHANASIA 10/26/98 STUDY DAY 25 GROSS: DARK RED RIGHT APICAL LOBE; AREA 0.5 CM DIAMETER; EXTENDS THROUGH	GROSS: CONTENT ABNORMAL	GROSS: TAIL BENT MEDIAL PORTION	SCHEDULED EUTHANASIA 10/24/98 STUDY DAY 23 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/27/98 STUDY DAY 26 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/25/98 STUDY DAY 24 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/26/98 STUDY DAY 25 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/24/98 STUDY DAY 23 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/26/98 STUDY DAY 25 GROSS: NO SI GNIFI CANT CHANGES OBSERVED
GENERATI O WI I NDI VI D		FEMALE	FEMALE		APPEARANCE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE
A ONE-		0 MG/KG/DAY SPLEEN	O MG/KG/DAY LUNGS	VAGINA	EXT. A	0 MG/KG/DAY	10 MG/KG/DAY	10 MG/KG/DAY	10 MG/KG/DAY	10 MG/KG/DAY	10 MG/KG/DAY
° .		GROUP:	GROUP:			GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:
).: 3472.3 ERA, INC.		231-10 GROUP:	233-08 GROUP:			237-14	188-06	195-10 GROUP:	224-10 GROUP:	234-14 GROUP:	236-14 GROUP:
SLI STUDY NO.: CLIENT: NIPERA,		 									,
SLI S. CLI EN.		ANIMAL NO.	ANI MAL NO.			ANI MAL NO.					

PAGE 8	GRADE	25	22	24	23	24	24	22	24 P	22	24
NDING STUDY IN RATS YDRATE 3SERVATI ONS		10/26/98 STUDY DAY CHANGES OBSERVED	10/23/98 STUDY DAY CHANGES OBSERVED	10/25/98 STUDY DAY	10/24/98 STUDY DAY	10/25/98 STUDY DAY CHANGES OBSERVED	10/25/98 STUDY DAY CHANGES OBSERVED	10/23/98 STUDY DAY CHANGES OBSERVED	/25/98 STUDY DAY	EUTHANASIA 10/23/98 STUDY DAY SI GNIFI CANT CHANGES OBSERVED	10/25/98 STUDY DAY CHANGES OBSERVED
APPENDIX BB A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: DILATED PELVIS RIGHT	SCHEDULED EUTHANASIA GROSS: DILATED PELVIS RIGHT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA 10. GROSS: DARK RED RIGHT APICAL LOBE	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANI	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT
GENERATI O WI' I NDI VI D		FEMALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE
A 0NE-0		10 MG/KG/DAY	10 MG/KG/DAY	10 MG/KG/DAY KI DNEYS	20 MG/KG/DAY KI DNEYS	20 MG/KG/DAY	20 MG/KG/DAY	20 MG/KG/DAY	20 MG/KG/DAY LUNGS	20 MG/KG/DAY	20 MG/KG/DAY
 		GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:
0.: 3472. ERA, INC.		236-15 GROUP:	238-10	243-12	198-15	205-12 GROUP:	205-14	208-11	218-14	239-12 GROUP:	241-05 GROUP:
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

6	团							<u>с</u>	_	
PAGE	GRADE	1 1 1 1								
		22 ED TO	25	24	23	24	28	88	24	23
ING STUDY IN RATS BRATE GERVATI ONS		EUTHANASIA 10/23/98 STUDY DAY 22 PARENT CONSTRICTION PERICARDI UM APPEARS PARTI ALLY ADHERED TO RIGHT VENTRI CLE AND CAUSI NG SLI GHT CONSTRICTI ON	10/26/98 STUDY DAY CHANGES OBSERVED	10/25/98 STUDY DAY CHANGES OBSERVED	EUTHANASIA 10/24/98 STUDY DAY SI GNIFI CANT CHANGES OBSERVED	10/25/98 STUDY DAY	10/29/98 STUDY DAY CHANGES OBSERVED	10/29/98 STUDY DAY	10/25/98 STUDY DAY	10/24/98 STUDY DAY CHANGES OBSERVED
APPENDIX BB A ONE-GENERATION REPRODUCTION RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL FI GROSS NECROPSY OBSERVATIONS	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA 10/2. GROSS: APPARENT CONSTRICTION PERI CARDI UM APPEARS CAUSI NG SLI GHT CONS	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: DILATED PELVIS RIGHT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: TAIL BENT PROXIMAL TAIL	SCHEDULED EUTHANASIA GROSS: DILATED PELVIS BILATERAL	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT
GENERATI ON WI T I NDI VI DU		FEMALE	FEMALE	FEMALE	FEMALE	FEMALE S	FEMALE	FEMALE APPEARANCE	FEMALE S	FEMALE
A ONE-		20 MG/KG/DAY HEART	30 MG/KG/DAY	30 MG/KG/DAY	30 MG/KG/DAY	30 MG/KG/DAY KI DNEYS	30 MG/KG/DAY	30 MG/KG/DAY EXT. A	30 MG/KG/DAY KI DNEYS	30 MG/KG/DAY
2.3		GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:
0.: 3472.3 ERA, INC.		242-11	200-12	207-13	212-12	217-16	222-12	222-13	230-11	240-11
SLI STUDY NO.: CLIENT: NIPERA,		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

10	GRADE	1 1 1 1 1 1					А	Ъ	ď	
PAGE	5	1 1 1 1 1 1 1 1 1 1							er; slightly	
		23	23	24	23	23	25	26	26 1 CM DIAMETE	25
IN RATS		Y DAY	Y DAY	Y DAY	Y DAY	Y DAY	×	STUDY DAY	- EUTHANASIA 10/27/98 STUDY DAY 26 AY AREA(S) CAPSULAR SURFACE; MULTIPLE; UP TO 0.1 CM DIAMETER; SLIGHTLY RAISED	Y DAY
DI NG STUDY 1 DRATE SERVATI ONS		10/24/98 STUD CHANGES OBSERVED	5	10/25/98 STUDY CHANGES OBSERVED	10/24/98 STUD CHANGES OBSERVED	10/24/98 STUD CHANGES OBSERVED	10/26/98 STUDY DA' MATTING EYE; CLEAR COLORLESS	10/27/98	10/27/98 FACE; MULTI	5 ;
APPENDIX BB IE- GENERATI ON REPRODUCTI ON RANGE- FI NDI NG STUDY IN RATS WI TH NI CKEL SULFATE HEXAHYDRATE INDI VI DUAL FI GROSS NECROPSY OBSERVATI ONS	EUTHANASIA	EUTHANASI A SI GNI FI CANT	EUTHANASI A SI GNI FI CANT	EUTHANASI A SI GNI FI CANT	EUTHANASI A SI GNI FI CANT	SCHEDULED EUTHANASIA GROSS: NO SIGNIFICANT	SCHEDULED EUTHANASIA GROSS: HAI RCOAT - WET AROUND RI GHT	SCHEDULED EUTHANASIA GROSS: TAIL BENT PROXIMAL TAIL	SCHEDULED EUTHANASIA GROSS: GRAY AREA(S) CAPSULAR SURI RAI SED	SCHEDULED EUTHANASIA GROSS: NO SI GNIFI CANT
APPE REPRODUCTI H NICKEL SU AL F1 GROSS	SCHEDULED	SCHEDULED GROSS: NO	SCHEDULED GROSS: NO	SCHEDULED GROSS: NO	SCHEDULED GROSS: NO	SCHEDULED GROSS: NO	SCHEDULED GROSS: HA	SCHEDULED EUTHAN/ GROSS: TAIL BENT PROXIMAI	SCHEDULED GROSS: GR	SCHEDULED GROSS: NO
- GENERATI ON WI T. I NDI VI DU		FEMALE	FEMALE	FEMALE	FEMALE	FEMALE	FEMALE APPEARANCE	FEMALE APPEARANCE	FEMALE N	FEMALE
A ONE		50 MG/KG/DAY	50 MG/KG/DAY	50 MG/KG/DAY	50 MG/KG/DAY	50 MG/KG/DAY	50 MG/KG/DAY EXT.	50 MG/KG/DAY EXT.	50 MG/KG/DAY SPLEEN	75 MG/KG/DAY
. 23 . 3		GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	GROUP:	
NO.: 3472.3 PERA, INC.		194-07	194-12	199- 09	202-10	215-12	216-11	226-08	232-10	197-07 GROUP:
SLI STUDY NO.: CLI ENT: NI PERA,		ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.	ANI MAL NO.

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

PAGE 11	GRADE			ď	Q.			-
APPENDIX BB A ONE- GENERATI ON REPRODUCTI ON RANGE-FINDING STUDY IN RATS WITH NICKEL SULFATE HEXAHYDRATE INDIVIDUAL F1 GROSS NECROPSY OBSERVATI ONS	SCHEDULED EUTHANASIA	SCHEDULED EUTHANASIA 10/26/98 STUDY DAY 25 GROSS: NO SI GNIFI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/26/98 STUDY DAY 25 GROSS: NO SI GNI FI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/25/98 STUDY DAY 24 GROSS: MOTTLED ALL LOBES; DARK RED AND RED	SCHEDULED EUTHANASIA 10/25/98 STUDY DAY 24 GROSS: CONTENT ABNORMAL SMALL AMOUNT OF WHITE MUCOID MATERIAL	SCHEDULED EUTHANASIA 10/24/98 STUDY DAY 23 GROSS: NO SI GNI FI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/24/98 STUDY DAY 23 GROSS: NO SI GNI FI CANT CHANGES OBSERVED	SCHEDULED EUTHANASIA 10/25/98 STUDY DAY 24 GROSS: DILATED PELVIS RIGHT
A ONE- GENERATI ON WIT INDI VI DU		75 MG/KG/DAY FEMALE	75 MG/KG/DAY FEMALE	75 MG/KG/DAY FEMALE LUNGS	75 MG/KG/DAY FEMALE VAGINA	75 MG/KG/DAY FEMALE	75 MG/KG/DAY FEMALE	75 MG/KG/DAY FEMALE KI DNEYS
SLI STUDY NO.: 3472.3 CLI ENT: NI PERA, INC.		ANI MAL NO. 210-14 GROUP:	ANI MAL NO. 210-16 GROUP:	ANI MAL NO. 220-14 GROUP:	ANI MAL NO. 228-15 GROUP:	ANI MAL NO. 235-10 GROUP:	ANIMAL NO. 235-11 GROUP:	ANI MAL NO. 244-11 GROUP:

GROSS GRADE CODE: 1-SLIGHT, 2-MODERATE, 3-MARKED, P-PRESENT

APPENDIX CC

SLI Historical Control Data

Page 1

OL DATA CATION DAY 0	MEAN POST-IMPLANTATION LOSS		1.48	1.46	1.69	1.84	2.30	0.88	1.44	1.25	1.54	0.88-2.3
IC. HISTORICAL CONTR ANTATION LOSS ON LA	MEAN NO. LIVE PUPS		15,48	14.54	14.19	13.00	14.95	15.20	14.40	14.29	14.51	13-15.48
SPRINGBORN LABORATORIES, INC. HISTORICAL CONTROL DATA ANTATION DATA AND POST-IMPLANTATION LOSS ON LACATION DAY 0	MEAN IMPLANTATION SCAR COUNT	AND THE PROPERTY OF THE PROPER	16.96	16.00	15.88	14.84	17.25	16.08	15.84	15.54	16.05	14.84-17.25
SFIMPLAN		Fo	R-01	R-02	R-03	R-04	R-05	R-06	R-07	R-08	MEAN	RANGE

Note: Implantation scar count minus the number of live pups on Lactation Day 0 equals post-implantation loss.

Wednesday, February 17, 1999

	SPRINGBORN	N LABORATORIES, INC. HISTORICAL CONTROL DATA F1 PUP DATA DURING LACTATION	ABORATORIES, INC. HISTORICAL (FILE) PUP DATA DURING LACTATION	TORICAL	CONTROI N	_ DATA	
STUDY NO.	% LIVE PUPS	% DEAD PUPS	% LITTERS WITH LIVE OFFSPRING	SEX RATIO (M/F)	SEX RATIO (M/TOTAL)	MEAN LIVE LITTER SIZE	
LACTATION DAY: 0							
R-06	7.76	2.3	100.0	*.	52.6	15.2	
R-08	98,6	1.4	96.0	1.2	54.8	14.3	
R-01	97.3	2.7	92.0	1.2	54.8	15.5	
R-03	97.4	2.6	94.1	1.0	49.3	14.2	
R-02	99.1	6'0	96.0	6.0	48,4	14.5	
R-07	97.3	2.7	100.0	1.0	90'09	14,4	
R-04	95.6	4.4	100.0	÷	51.7	13.0	
R-05	7.76	2.3	100.0	Ħ	51.8	15.0	
R-14	98.4	1.6	100.0	***	53.3	14.4	
MEAN	7.76	2.3	97.6	1.1	51.9	14.5	
RANGE	95.6 - 99.1	0.9 ~ 4.4	92.0 - 100.0	0.9 - 1.2	48.4 ~ 54.8	13.0 ~ 15.5	

Wednesday, February 17, 1999

SPRIN	SPRINGBORN LABORATORIES, INC. HISTORICAL CONTROL DATA F1 PUP SURVIVAL AND BODY WEIGHT	LABORATORIES, INC. HISTORICAL CC F1 PUP SURVIVAL AND BODY WEIGHT	AL CONTROL DATA	·
STUDY NO.	PUP SURVIVAL%	SEX RATIO (WF)	MEAN PUP WEIGHT (G)	
LACTATION DAY: 04 (BC)				anti-aria d'Albitica de la companya del companya de la companya de la companya del companya de la companya de l
R-01	98.3		10.9	
R-02	98.3	7.1	9.3	
R-03	98.2	n c	9.4	
R-04	98.5	D: 3	ଷ୍ଟ	
R-06	6.86	3	11.0	
R-07	98.3	<u> </u>	6 6	
R-08	98.8	<u>.</u> .	9.4	
R-14	99.2	. 2.	10.6	
MEAN	98.6	1.1	10.2	
RANGE	98.2 - 99.2	0.9 - 1.2	0 3 .44 4	

SPRINGBORN LABORATORIES, INC. HISTORICAL CONTROL DATA

Wednesday, February 17, 1999

Page 6

Page 7

APPENDIX DD

SLI Personnel Responsibilities

SLI PERSONNEL RESPONSIBILITIES

Joseph C. Siglin, Ph.D., DABT

Bjorn A. Thorsrud, Ph.D.

Robert C. Springborn, Ph.D. Malcolm Blair, Ph.D.

Anita M. Bosau, RQAP-GLP J. Dale Thurman, D.V.M., M.S., DACVP Deanna M. Talerico, RQAP-GLP

Delores P. Knippen Linda Unrue, B.S., LATG Steven H. Magness, B.S., LATG

Cheryl A. Bellamy

Kathy M. Gasser

Study Director/Director of

Research

Alternate Contact/Manager,

Developmental and Reproductive

Toxicology

Chairman, President and CEO

Senior Vice President and

Managing Director

Director of Compliance Assurance

Director of Pathology

Supervisor of Nonacute Quality

Assurance

Supervisor of Pharmacy

Primary Technician

Supervisor of Gross and Fetal

Pathology

Supervisor of Nonacute Report

Preparation

Supervisor of Archives